These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3737680)

  • 21. Triple chamber technique for thermal neutron dose measurements in fast neutron beams.
    Schmidt R; Hess A
    Strahlentherapie; 1982 Oct; 158(10):612-5. PubMed ID: 7179343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uniformity in dosimetry protocols for therapeutic applications of fast neutron beams.
    Mijnheer BJ; Wootton P; Williams JR; Eenmaa J; Parnell CJ
    Med Phys; 1987; 14(6):1020-6. PubMed ID: 3696066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dosimetry with tissue-equivalent ionisation chambers in fast neutron fields for biomedical applications.
    Zoetelief J; Broerse JJ
    Phys Med Biol; 1983 May; 28(5):503-20. PubMed ID: 6867110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First-stage validation of a portable imageable MR-compatible water calorimeter.
    D'Souza M; Nusrat H; Renaud J; Peterson G; Sarfehnia A
    Med Phys; 2020 Oct; 47(10):5312-5323. PubMed ID: 32786081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A water calorimeter for on-site absorbed dose to water calibrations in (60)Co and MV-photon beams including MRI incorporated treatment equipment.
    de Prez L; de Pooter J; Jansen B; Aalbers T
    Phys Med Biol; 2016 Jul; 61(13):5051-76. PubMed ID: 27300589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absolute neutron dosimetry: effects of ionization chamber wall thickness.
    Ten Haken RK; Awschalom M; Rosenberg I
    Med Phys; 1985; 12(1):46-52. PubMed ID: 3974524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absolute dosimetry in a d(14 MeV) + Be fast neutron beam.
    Bourhis-Martin E; Brede HJ; Greif KD; Baumhoer W; Rassow J; Sauerwein W
    Med Phys; 2004 Apr; 31(4):832-8. PubMed ID: 15125001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam?
    Ding GX; Duzenli C; Kalach NI
    Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.
    Diffenderfer ES; Ainsley CG; Kirk ML; McDonough JE; Maughan RL
    Med Phys; 2011 Nov; 38(11):6248-56. PubMed ID: 22047390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Clatterbridge high-energy neutron facility: dosimetry intercomparisons.
    Blake SW; Bonnett DE; Shaw JE; Eenmaa J; Otte V; Awschalom M; Tatcher M; Vynckier S
    Br J Radiol; 1988 Oct; 61(730):921-7. PubMed ID: 3191317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of a calorimeter for neutron dosimetry.
    Greene D; Major D; Redpath T
    Phys Med Biol; 1975 Mar; 20(2):244-54. PubMed ID: 1153514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Commissioning of intensity modulated neutron radiotherapy (IMNRT).
    Burmeister J; Spink R; Liang L; Bossenberger T; Halford R; Brandon J; Delauter J; Snyder M
    Med Phys; 2013 Feb; 40(2):021718. PubMed ID: 23387741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Absorbed dose beam quality correction factors kappaQ for the NE2571 chamber in a 5 MV and a 10 MV photon beam.
    Palmans H; Mondelaers W; Thierens H
    Phys Med Biol; 1999 Mar; 44(3):647-63. PubMed ID: 10211800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neutron spectra and neutron kerma derived from activation and fission detector measurements in a d+T neutron therapy beam.
    Mijnheer BJ; Haringa H; Nolthenius HJ; Zijp WL
    Phys Med Biol; 1981 Jul; 26(4):641-55. PubMed ID: 6789344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A prototype low-cost secondary standard calorimeter for reference dosimetry with ultra-high pulse dose rates.
    Bass GA; Shipley DR; Flynn SF; Thomas RAS
    Br J Radiol; 2023 Jan; 96(1141):20220638. PubMed ID: 36259518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neutron and gamma spectroscopy for clinical dosimetry.
    Schmidt R; Magiera E; Scobel W
    Med Phys; 1980; 7(5):507-13. PubMed ID: 7421760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the gamma-ray dose in an epithermal neutron beam.
    Raaijmakers CP; Konijnenberg MW; Mijnheer BJ; Stecher-Rasmussen F; Verhagen H
    Strahlenther Onkol; 1993 Jan; 169(1):18-20. PubMed ID: 8434334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new look at displacement factor and point of measurement corrections in ionization chamber dosimetry.
    Awschalom M; Rosenberg I; Ten Haken RK
    Med Phys; 1983; 10(3):307-13. PubMed ID: 6877177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Measurement of peak correction factor of Farmer chamber for calibration of flattening filter free (FFF) clinical photon beams].
    Kontra G; Major T; Polgár C
    Magy Onkol; 2015 Jun; 59(2):119-23. PubMed ID: 26035159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A direct comparison of water calorimetry and Fricke dosimetry.
    Ross CK; Klassen NV; Shortt KR; Smith GD
    Phys Med Biol; 1989 Jan; 34(1):23-42. PubMed ID: 2928376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.