BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37376993)

  • 1. Living Suzuki-Miyaura Catalyst-Transfer Polymerization for Precision Synthesis of Length-Controlled Armchair Graphene Nanoribbons and Their Block Copolymers.
    Lee J; Ryu H; Park S; Cho M; Choi TL
    J Am Chem Soc; 2023 Jul; 145(28):15488-15495. PubMed ID: 37376993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision Synthesis of Various Low-Bandgap Donor-Acceptor Alternating Conjugated Polymers via Living Suzuki-Miyaura Catalyst-Transfer Polymerization.
    Kim H; Lee J; Kim T; Cho M; Choi TL
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202205828. PubMed ID: 35650688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal Suzuki-Miyaura Catalyst-Transfer Polymerization for Precision Synthesis of Strong Donor/Acceptor-Based Conjugated Polymers and Their Sequence Engineering.
    Lee J; Kim H; Park H; Kim T; Hwang SH; Seo D; Chung TD; Choi TL
    J Am Chem Soc; 2021 Jul; 143(29):11180-11190. PubMed ID: 34264077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision Graphene Nanoribbon Heterojunctions by Chain-Growth Polymerization.
    Zhang JJ; Liu K; Xiao Y; Yu X; Huang L; Gao HJ; Ma J; Feng X
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202310880. PubMed ID: 37594477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Rational Design of Highly Controlled Suzuki-Miyaura Catalyst-Transfer Polycondensation for Precision Synthesis of Polythiophenes and Their Block Copolymers: Marriage of Palladacycle Precatalysts with MIDA-Boronates.
    Seo KB; Lee IH; Lee J; Choi I; Choi TL
    J Am Chem Soc; 2018 Mar; 140(12):4335-4343. PubMed ID: 29522325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bottom-Up Synthesis of Soluble and Narrow Graphene Nanoribbons Using Alkyne Benzannulations.
    Yang W; Lucotti A; Tommasini M; Chalifoux WA
    J Am Chem Soc; 2016 Jul; 138(29):9137-44. PubMed ID: 27352727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Bottom-Up Preparation of Graphene Nanoribbons by Mild Suzuki-Miyaura Polymerization of Simple Triaryl Monomers.
    Li G; Yoon KY; Zhong X; Zhu X; Dong G
    Chemistry; 2016 Jun; 22(27):9116-20. PubMed ID: 27159538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modular synthetic approach for band-gap engineering of armchair graphene nanoribbons.
    Li G; Yoon KY; Zhong X; Wang J; Zhang R; Guest JR; Wen J; Zhu XY; Dong G
    Nat Commun; 2018 Apr; 9(1):1687. PubMed ID: 29703958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suzuki-Miyaura Catalyst-Transfer Polycondensation of Triolborate-Type Carbazole Monomers.
    Kobayashi S; Ashiya M; Yamamoto T; Tajima K; Yamamoto Y; Isono T; Satoh T
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-Surface Synthesis of 8- and 10-Armchair Graphene Nanoribbons.
    Sun K; Ji P; Zhang J; Wang J; Li X; Xu X; Zhang H; Chi L
    Small; 2019 Apr; 15(15):e1804526. PubMed ID: 30891917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N=8 Armchair Graphene Nanoribbons: Solution Synthesis and High Charge Carrier Mobility.
    Yao X; Zhang H; Kong F; Hinaut A; Pawlak R; Okuno M; Graf R; Horton PN; Coles SJ; Meyer E; Bogani L; Bonn M; Wang HI; Müllen K; Narita A
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202312610. PubMed ID: 37750665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth Optimization and Device Integration of Narrow-Bandgap Graphene Nanoribbons.
    Borin Barin G; Sun Q; Di Giovannantonio M; Du CZ; Wang XY; Llinas JP; Mutlu Z; Lin Y; Wilhelm J; Overbeck J; Daniels C; Lamparski M; Sahabudeen H; Perrin ML; Urgel JI; Mishra S; Kinikar A; Widmer R; Stolz S; Bommert M; Pignedoli C; Feng X; Calame M; Müllen K; Narita A; Meunier V; Bokor J; Fasel R; Ruffieux P
    Small; 2022 Aug; 18(31):e2202301. PubMed ID: 35713270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photothermal Bottom-up Graphene Nanoribbon Growth Kinetics.
    Falke Y; Senkovskiy BV; Ehlen N; Wysocki L; Marangoni T; Durr RA; Chernov AI; Fischer FR; Grüneis A
    Nano Lett; 2020 Jul; 20(7):4761-4767. PubMed ID: 32510961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-Narrow Low-Bandgap Graphene Nanoribbons from Bromoperylenes-Synthesis and Terahertz-Spectroscopy.
    Jänsch D; Ivanov I; Zagranyarski Y; Duznovic I; Baumgarten M; Turchinovich D; Li C; Bonn M; Müllen K
    Chemistry; 2017 Apr; 23(20):4870-4875. PubMed ID: 28318065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision Synthesis of n-Type π-Conjugated Polymers in Catalyst-Transfer Condensation Polymerization.
    Yokozawa T; Nanashima Y; Ohta Y
    ACS Macro Lett; 2012 Jul; 1(7):862-866. PubMed ID: 35607117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise Structural Regulation and Band-Gap Engineering of Curved Graphene Nanoribbons.
    Niu W; Ma J; Feng X
    Acc Chem Res; 2022 Dec; 55(23):3322-3333. PubMed ID: 36378659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons.
    Passi V; Gahoi A; Senkovskiy BV; Haberer D; Fischer FR; Grüneis A; Lemme MC
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):9900-9903. PubMed ID: 29516716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Templated Synthesis of End-Functionalized Graphene Nanoribbons through Living Ring-Opening Alkyne Metathesis Polymerization.
    von Kugelgen S; Piskun I; Griffin JH; Eckdahl CT; Jarenwattananon NN; Fischer FR
    J Am Chem Soc; 2019 Jul; 141(28):11050-11058. PubMed ID: 31264864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons.
    Overbeck J; Barin GB; Daniels C; Perrin ML; Braun O; Sun Q; Darawish R; De Luca M; Wang XY; Dumslaff T; Narita A; Müllen K; Ruffieux P; Meunier V; Fasel R; Calame M
    ACS Nano; 2019 Nov; 13(11):13083-13091. PubMed ID: 31573799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111).
    Merino-Díez N; Garcia-Lekue A; Carbonell-Sanromà E; Li J; Corso M; Colazzo L; Sedona F; Sánchez-Portal D; Pascual JI; de Oteyza DG
    ACS Nano; 2017 Nov; 11(11):11661-11668. PubMed ID: 29049879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.