These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37377084)

  • 1. Suppressing Structural Relaxation in Nanoscale Antimony to Enable Ultralow-Drift Phase-Change Memory Applications.
    Chen B; Wang XP; Jiao F; Ning L; Huang J; Xie J; Zhang S; Li XB; Rao F
    Adv Sci (Weinh); 2023 Sep; 10(25):e2301043. PubMed ID: 37377084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Chemical Heterogeneity Ensures Unprecedently Low Resistance Drift in Cache-Type Phase-Change Memory Materials.
    Huang J; Chen B; Sha G; Gong H; Song T; Ding K; Rao F
    Nano Lett; 2023 Mar; 23(6):2362-2369. PubMed ID: 36861962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-change heterostructure enables ultralow noise and drift for memory operation.
    Ding K; Wang J; Zhou Y; Tian H; Lu L; Mazzarello R; Jia C; Zhang W; Rao F; Ma E
    Science; 2019 Oct; 366(6462):210-215. PubMed ID: 31439757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-level phase-change memory with ultralow power consumption and resistance drift.
    Liu B; Li K; Liu W; Zhou J; Wu L; Song Z; Elliott SR; Sun Z
    Sci Bull (Beijing); 2021 Nov; 66(21):2217-2224. PubMed ID: 36654113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drift of Schottky Barrier Height in Phase Change Materials.
    Nir-Harwood RG; Cohen G; Majumdar A; Haight R; Ber E; Gignac L; Ordan E; Shoham L; Keller Y; Kornblum L; Yalon E
    ACS Nano; 2024 Mar; 18(11):8029-8037. PubMed ID: 38458609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling the Effect of Superlattice Interfaces and Intermixing on Phase Change Memory Performance.
    Khan AI; Wu X; Perez C; Won B; Kim K; Ramesh P; Kwon H; Tung MC; Lee Z; Oh IK; Saraswat K; Asheghi M; Goodson KE; Wong HP; Pop E
    Nano Lett; 2022 Aug; 22(15):6285-6291. PubMed ID: 35876819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Si-Sb-Te materials for phase change memory applications.
    Rao F; Song Z; Ren K; Zhou X; Cheng Y; Wu L; Liu B
    Nanotechnology; 2011 Apr; 22(14):145702. PubMed ID: 21346305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization behavior and electrical characteristics of Ga-Sb thin films for phase change memory.
    Yin Q; Chen L
    Nanotechnology; 2020 May; 31(21):215709. PubMed ID: 32032964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy Efficient Neuro-Inspired Phase-Change Memory Based on Ge
    Khan AI; Yu H; Zhang H; Goggin JR; Kwon H; Wu X; Perez C; Neilson KM; Asheghi M; Goodson KE; Vora PM; Davydov A; Takeuchi I; Pop E
    Adv Mater; 2023 Jul; 35(30):e2300107. PubMed ID: 36720651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thickness-Dependent Crystallization of Ultrathin Antimony Thin Films for Monatomic Multilevel Reflectance and Phase Change Memory Designs.
    Yimam DT; Kooi BJ
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13593-13600. PubMed ID: 35266381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The geometric effect and programming current reduction in cylindrical-shaped phase change memory.
    Li Y; Hwang CH; Li TY; Cheng HW
    Nanotechnology; 2009 Jul; 20(28):285701. PubMed ID: 19550022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edge-Contact.
    Wang X; Song S; Wang H; Guo T; Xue Y; Wang R; Wang H; Chen L; Jiang C; Chen C; Shi Z; Wu T; Song W; Zhang S; Watanabe K; Taniguchi T; Song Z; Xie X
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202222. PubMed ID: 36062987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monatomic phase change memory.
    Salinga M; Kersting B; Ronneberger I; Jonnalagadda VP; Vu XT; Le Gallo M; Giannopoulos I; Cojocaru-Mirédin O; Mazzarello R; Sebastian A
    Nat Mater; 2018 Aug; 17(8):681-685. PubMed ID: 29915424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and Programming Algorithm of Phase Change Memory Cells for Analog In-Memory Computing.
    Antolini A; Franchi Scarselli E; Gnudi A; Carissimi M; Pasotti M; Romele P; Canegallo R
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory.
    Wu X; Khan AI; Lee H; Hsu CF; Zhang H; Yu H; Roy N; Davydov AV; Takeuchi I; Bao X; Wong HP; Pop E
    Nat Commun; 2024 Jan; 15(1):13. PubMed ID: 38253559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring the Structural and Optical Properties of Germanium Telluride Phase-Change Materials by Indium Incorporation.
    Wang X; Shen X; Sun S; Zhang W
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanophase change for data storage applications.
    Shi LP; Chong TC
    J Nanosci Nanotechnol; 2007 Jan; 7(1):65-93. PubMed ID: 17455476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State dependence and temporal evolution of resistance in projected phase change memory.
    Kersting B; Ovuka V; Jonnalagadda VP; Sousa M; Bragaglia V; Sarwat SG; Le Gallo M; Salinga M; Sebastian A
    Sci Rep; 2020 May; 10(1):8248. PubMed ID: 32427898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ta-Doped Sb
    Xue Y; Yan S; Lv S; Song S; Song Z
    Nanomicro Lett; 2021 Jan; 13(1):33. PubMed ID: 34138214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing.
    Rao F; Ding K; Zhou Y; Zheng Y; Xia M; Lv S; Song Z; Feng S; Ronneberger I; Mazzarello R; Zhang W; Ma E
    Science; 2017 Dec; 358(6369):1423-1427. PubMed ID: 29123020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.