These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37378686)
1. Behavioral and Electrophysiological Study on Eight Japanese Papilio Species with Five Hostplant Volatiles and Linalool. Inoue TA; Suetake M; Nishidzu N; Yokohari F; Niihara K; Fukuda T J Chem Ecol; 2023 Aug; 49(7-8):397-407. PubMed ID: 37378686 [TBL] [Abstract][Full Text] [Related]
2. Synergistic or antagonistic modulation of oviposition response of two swallowtail butterflies, Papilio maackii and P. protenor, to Phellodendron amurense by its constitutive prenylated flavonoid, phellamurin. Honda K; Omura H; Chachin M; Kawano S; Inoue TA J Chem Ecol; 2011 Jun; 37(6):575-81. PubMed ID: 21573758 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the olfactory sensitivity of two sympatric steppe grasshopper species (Orthoptera: Acrididae) to plant volatile compounds. Chen H; Zhao Y; Kang L Sci China C Life Sci; 2004 Apr; 47(2):115-23. PubMed ID: 15379243 [TBL] [Abstract][Full Text] [Related]
4. Differential electroantennogram response of females and males of two parasitoid species to host-related green leaf volatiles and inducible compounds. Chen L; Fadamiro HY Bull Entomol Res; 2007 Oct; 97(5):515-22. PubMed ID: 17916269 [TBL] [Abstract][Full Text] [Related]
5. Morphology of foretarsal ventral surfaces of Japanese Papilio butterflies and relations between these morphology, phylogeny and hostplant preferring hierarchy. Inoue TA Zoolog Sci; 2006 Feb; 23(2):169-89. PubMed ID: 16603810 [TBL] [Abstract][Full Text] [Related]
6. A dihydroxy-gamma-lactone as an oviposition stimulant for the swallowtail butterfly, Papilio bianor, from the rutaceous plant, Orixa japonica. Ono H; Nishida R; Kuwahara Y Biosci Biotechnol Biochem; 2000 Sep; 64(9):1970-3. PubMed ID: 11055405 [TBL] [Abstract][Full Text] [Related]
7. Diversification and selection pattern of Sato A; Okamura Y; Murakami M PeerJ; 2020; 8():e10625. PubMed ID: 33391886 [TBL] [Abstract][Full Text] [Related]
8. Electrophysiological and behavioral responses of a parasitic wasp to plant volatiles induced by two leaf miner species. Wei JN; Kang L Chem Senses; 2006 Jun; 31(5):467-77. PubMed ID: 16621971 [TBL] [Abstract][Full Text] [Related]
9. Foraging behavior of the dead leaf butterfly, Kallima inachus. Tang Y; Zhou C; Chen X; Zheng H J Insect Sci; 2013; 13():58. PubMed ID: 23909654 [TBL] [Abstract][Full Text] [Related]
10. Electroantennographic bioassay as a screening tool for host plant volatiles. Beck JJ; Light DM; Gee WS J Vis Exp; 2012 May; (63):e3931. PubMed ID: 22588282 [TBL] [Abstract][Full Text] [Related]
11. Olfactory preferences of Popillia japonica, Vanessa cardui, and Aphis glycines for Glycine max grown under elevated CO2. O'Neill BF; Zangerl AR; Delucia EH; Berenbaum MR Environ Entomol; 2010 Aug; 39(4):1291-301. PubMed ID: 22127180 [TBL] [Abstract][Full Text] [Related]
12. Oviposition stimulants for the black swallowtail butterfly: Identification of electrophysiologically active compounds in carrot volatiles. Baur R; Feeny P; Städler E J Chem Ecol; 1993 May; 19(5):919-37. PubMed ID: 24249074 [TBL] [Abstract][Full Text] [Related]
14. Japanese Papilio butterflies puddle using Na+ detected by contact chemosensilla in the proboscis. Inoue TA; Hata T; Asaoka K; Ito T; Niihara K; Hagiya H; Yokohari F Naturwissenschaften; 2012 Dec; 99(12):985-98. PubMed ID: 23138974 [TBL] [Abstract][Full Text] [Related]
15. Volatiles of different resistant cotton varieties mediate the host preference of Mirid bug Wu J; Cao Y; Teng D; Shan S; Geng T; Huang X; Zhang Y Front Plant Sci; 2024; 15():1428234. PubMed ID: 38933460 [TBL] [Abstract][Full Text] [Related]
16. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. Fraser AM; Mechaber WL; Hildebrand JG J Chem Ecol; 2003 Aug; 29(8):1813-33. PubMed ID: 12956509 [TBL] [Abstract][Full Text] [Related]
17. Olfactory receptor neuron responses of a longhorned beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), to pheromone, host, and non-host volatiles. MacKay CA; Sweeney JD; Hillier NK J Insect Physiol; 2015 Dec; 83():65-73. PubMed ID: 26449309 [TBL] [Abstract][Full Text] [Related]
18. Antennal responses of the two host races of the larch bud moth, Zeiraphera diniana, to larch and cembran pine volatiles. Syed Z; Guerin PM; Baltensweiler W J Chem Ecol; 2003 Jul; 29(7):1691-708. PubMed ID: 12921446 [TBL] [Abstract][Full Text] [Related]
19. Identification of odoriferous compounds from adults of a swallowtail butterfly, Papilio machaon (Lepidoptera: Papilionidae). Omura H; Honda K; Hayashi N Z Naturforsch C J Biosci; 2001; 56(11-12):1126-34. PubMed ID: 11837668 [TBL] [Abstract][Full Text] [Related]
20. The contribution of gustatory input to larval acceptance and female oviposition choice of potential host plants in Papilio hospiton (Géné). Sollai G; Crnjar R Arch Insect Biochem Physiol; 2019 Jan; 100(1):e21521. PubMed ID: 30418667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]