These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 37378720)
1. Recent Progress and Future Prospects of Laccase Immobilization on MOF Supports for Industrial Applications. Ren S; Wang F; Gao H; Han X; Zhang T; Yuan Y; Zhou Z Appl Biochem Biotechnol; 2024 Mar; 196(3):1669-1684. PubMed ID: 37378720 [TBL] [Abstract][Full Text] [Related]
2. Design of laccase-metal-organic framework hybrid constructs for biocatalytic removal of textile dyes. Birhanlı E; Noma SAA; Boran F; Ulu A; Yeşilada Ö; Ateş B Chemosphere; 2022 Apr; 292():133382. PubMed ID: 34954196 [TBL] [Abstract][Full Text] [Related]
3. Metal-organic frameworks for enzyme immobilization and nanozymes: A laccase-focused review. Alvarado-Ramírez L; Machorro-García G; López-Legarrea A; Trejo-Ayala D; Rostro-Alanis MJ; Sánchez-Sánchez M; Blanco RM; Rodríguez-Rodríguez J; Parra-Saldívar R Biotechnol Adv; 2024; 70():108299. PubMed ID: 38072099 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of laccase on mesoporous metal organic frameworks for efficient cross-coupling of ethyl ferulate. Xu X; Shen F; Lv G; Lin J World J Microbiol Biotechnol; 2024 Sep; 40(10):321. PubMed ID: 39279003 [TBL] [Abstract][Full Text] [Related]
5. Bioremediation of organic pollutants by laccase-metal-organic framework composites: A review of current knowledge and future perspective. Aghaee M; Salehipour M; Rezaei S; Mogharabi-Manzari M Bioresour Technol; 2024 Aug; 406():131072. PubMed ID: 38971387 [TBL] [Abstract][Full Text] [Related]
6. Improving laccase activity and stability by HKUST-1 with cofactor via one-pot encapsulation and its application for degradation of bisphenol A. Zhang R; Wang L; Han J; Wu J; Li C; Ni L; Wang Y J Hazard Mater; 2020 Feb; 383():121130. PubMed ID: 31518815 [TBL] [Abstract][Full Text] [Related]
7. Enzyme immobilization on metal organic frameworks: Laccase from Aspergillus sp. is better adapted to ZIF-zni rather than Fe-BTC. Tocco D; Carucci C; Todde D; Shortall K; Otero F; Sanjust E; Magner E; Salis A Colloids Surf B Biointerfaces; 2021 Dec; 208():112147. PubMed ID: 34634655 [TBL] [Abstract][Full Text] [Related]
8. Exploring current tendencies in techniques and materials for immobilization of laccases - A review. Alvarado-Ramírez L; Rostro-Alanis M; Rodríguez-Rodríguez J; Castillo-Zacarías C; Sosa-Hernández JE; Barceló D; Iqbal HMN; Parra-Saldívar R Int J Biol Macromol; 2021 Jun; 181():683-696. PubMed ID: 33798577 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers. Asgher M; Noreen S; Bilal M Int J Biol Macromol; 2017 Feb; 95():54-62. PubMed ID: 27825994 [TBL] [Abstract][Full Text] [Related]
10. Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal. Wu E; Li Y; Huang Q; Yang Z; Wei A; Hu Q Chemosphere; 2019 Oct; 233():327-335. PubMed ID: 31176895 [TBL] [Abstract][Full Text] [Related]
11. Covalent organic framework in-situ immobilized laccase for the covalent polymerization removal of sulfamethoxazole in the presence of natural phenols: Prominent enzyme stability and activity. Xu J; Zhang X; Zhou Z; Ye G; Wu D J Hazard Mater; 2024 Jan; 462():132714. PubMed ID: 37827099 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of defined laccase combinations for enhanced oxidation of phenolic contaminants. Ammann EM; Gasser CA; Hommes G; Corvini PF Appl Microbiol Biotechnol; 2014 Feb; 98(3):1397-406. PubMed ID: 23812279 [TBL] [Abstract][Full Text] [Related]
13. Designable immobilization of D-allulose 3-epimerase on bimetallic organic frameworks based on metal ion compatibility for enhanced D-allulose production. Tang H; Chen Y; Fan D; Zhao F; Han S Int J Biol Macromol; 2024 Jul; 273(Pt 1):133027. PubMed ID: 38857717 [TBL] [Abstract][Full Text] [Related]
14. Assessing the use of nanoimmobilized laccases to remove micropollutants from wastewater. Arca-Ramos A; Ammann EM; Gasser CA; Nastold P; Eibes G; Feijoo G; Lema JM; Moreira MT; Corvini PF Environ Sci Pollut Res Int; 2016 Feb; 23(4):3217-28. PubMed ID: 26490891 [TBL] [Abstract][Full Text] [Related]
15. Recent environmental applications of and development prospects for immobilized laccase: a review. Ren D; Wang Z; Jiang S; Yu H; Zhang S; Zhang X Biotechnol Genet Eng Rev; 2020 Oct; 36(2):81-131. PubMed ID: 33435852 [TBL] [Abstract][Full Text] [Related]
16. Substrate specificity and enzyme recycling using chitosan immobilized laccase. Skoronski E; Fernandes M; Magalhães Mde L; da Silva GF; João JJ; Soares CH; Júnior AF Molecules; 2014 Oct; 19(10):16794-809. PubMed ID: 25329872 [TBL] [Abstract][Full Text] [Related]
17. Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds. Mohammadi M; As'habi MA; Salehi P; Yousefi M; Nazari M; Brask J Int J Biol Macromol; 2018 Apr; 109():443-447. PubMed ID: 29274421 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of laccase on SiO₂ nanocarriers improves its stability and reusability. Patel SK; Kalia VC; Choi JH; Haw JR; Kim IW; Lee JK J Microbiol Biotechnol; 2014 May; 24(5):639-47. PubMed ID: 24509251 [TBL] [Abstract][Full Text] [Related]
19. Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases-A review. Bilal M; Ashraf SS; Cui J; Lou WY; Franco M; Mulla SI; Iqbal HMN Int J Biol Macromol; 2021 Jan; 166():352-373. PubMed ID: 33129906 [TBL] [Abstract][Full Text] [Related]
20. Enzyme Immobilization on Metal-Organic Framework (MOF): Effects on Thermostability and Function. Sher H; Ali H; Rashid MH; Iftikhar F; Saif-Ur-Rehman ; Nawaz MS; Khan WS Protein Pept Lett; 2019; 26(9):636-647. PubMed ID: 31208305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]