These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37378877)

  • 1. Comparison of Immersed Boundary Simulations of Heart Valve Hemodynamics Against In Vitro 4D Flow MRI Data.
    Kaiser AD; Schiavone NK; Elkins CJ; McElhinney DB; Eaton JK; Marsden AL
    Ann Biomed Eng; 2023 Oct; 51(10):2267-2288. PubMed ID: 37378877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator.
    Lee JH; Rygg AD; Kolahdouz EM; Rossi S; Retta SM; Duraiswamy N; Scotten LN; Craven BA; Griffith BE
    Ann Biomed Eng; 2020 May; 48(5):1475-1490. PubMed ID: 32034607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid-structure interaction simulation of artificial textile reinforced aortic heart valve: Validation with an in-vitro test.
    Sodhani D; Reese S; Aksenov A; Soğanci S; Jockenhövel S; Mela P; Stapleton SE
    J Biomech; 2018 Sep; 78():52-69. PubMed ID: 30086860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics.
    Tien WH; Chen HY; Berwick ZC; Krieger J; Chambers S; Dabiri D; Kassab GS
    Eur J Vasc Endovasc Surg; 2014 Oct; 48(4):459-64. PubMed ID: 25150441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of fluid-structure interaction simulations of the opening phase of phantom mitral heart valves under physiologically inspired conditions.
    Christierson L; Frieberg P; Lala T; Töger J; Liuba P; Revstedt J; Isaksson H; Hakacova N
    Comput Biol Med; 2024 Mar; 171():108033. PubMed ID: 38430739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based immersed boundary model of the aortic root.
    Hasan A; Kolahdouz EM; Enquobahrie A; Caranasos TG; Vavalle JP; Griffith BE
    Med Eng Phys; 2017 Sep; 47():72-84. PubMed ID: 28778565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model.
    Gilmanov A; Stolarski H; Sotiropoulos F
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29305610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust and efficient valve model based on resistive immersed surfaces.
    Astorino M; Hamers J; Shadden SC; Gerbeau JF
    Int J Numer Method Biomed Eng; 2012 Sep; 28(9):937-59. PubMed ID: 22941924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions.
    Griffith BE
    Int J Numer Method Biomed Eng; 2012 Mar; 28(3):317-45. PubMed ID: 25830200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aortic hemodynamics assessment prior and after valve sparing reconstruction: A patient-specific 4D flow-based FSI model.
    Nannini G; Caimi A; Palumbo MC; Saitta S; Girardi LN; Gaudino M; Roman MJ; Weinsaft JW; Redaelli A
    Comput Biol Med; 2021 Aug; 135():104581. PubMed ID: 34174756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-Specific Bicuspid Aortic Valve Biomechanics: A Magnetic Resonance Imaging Integrated Fluid-Structure Interaction Approach.
    Emendi M; Sturla F; Ghosh RP; Bianchi M; Piatti F; Pluchinotta FR; Giese D; Lombardi M; Redaelli A; Bluestein D
    Ann Biomed Eng; 2021 Feb; 49(2):627-641. PubMed ID: 32804291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamic effects of entry and exit tear size in aortic dissection evaluated with in vitro magnetic resonance imaging and fluid-structure interaction simulation.
    Zimmermann J; Bäumler K; Loecher M; Cork TE; Marsden AL; Ennis DB; Fleischmann D
    Sci Rep; 2023 Dec; 13(1):22557. PubMed ID: 38110526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Search for an Optimal Design of a Bioprosthetic Venous Valve: In silico and in vitro Studies.
    Chen HY; Tien WS; Chambers SD; Dabiri D; Kassab GS
    Eur J Vasc Endovasc Surg; 2019 Jul; 58(1):112-119. PubMed ID: 31133446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation.
    Bavo AM; Rocatello G; Iannaccone F; Degroote J; Vierendeels J; Segers P
    PLoS One; 2016; 11(4):e0154517. PubMed ID: 27128798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smoothed particle hydrodynamics based FSI simulation of the native and mechanical heart valves in a patient-specific aortic model.
    Laha S; Fourtakas G; Das PK; Keshmiri A
    Sci Rep; 2024 Mar; 14(1):6762. PubMed ID: 38514703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel computational model for the hemodynamics of bileaflet mechanical valves in the opening phase.
    Jahandardoost M; Fradet G; Mohammadi H
    Proc Inst Mech Eng H; 2015 Mar; 229(3):232-44. PubMed ID: 25833999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmented resistive immersed surfaces valve model for the simulation of cardiac hemodynamics with isovolumetric phases.
    This A; Boilevin-Kayl L; Fernández MA; Gerbeau JF
    Int J Numer Method Biomed Eng; 2020 Mar; 36(3):e3223. PubMed ID: 31206245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of valve simplifications on left ventricular hemodynamics in a three dimensional simulation based on in vivo MRI data.
    Imanparast A; Fatouraee N; Sharif F
    J Biomech; 2016 Jun; 49(9):1482-1489. PubMed ID: 27040387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid Dynamic Characterization of Transcatheter Aortic Valves Using Particle Image Velocimetry.
    Barakat M; Dvir D; Azadani AN
    Artif Organs; 2018 Nov; 42(11):E357-E368. PubMed ID: 30198167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.