These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37379178)

  • 1. autoSMIM: Automatic Superpixel-Based Masked Image Modeling for Skin Lesion Segmentation.
    Wang Z; Lyu J; Tang X
    IEEE Trans Med Imaging; 2023 Dec; 42(12):3501-3511. PubMed ID: 37379178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning from dermoscopic images in association with clinical metadata for skin lesion segmentation and classification.
    Dong C; Dai D; Zhang Y; Zhang C; Li Z; Xu S
    Comput Biol Med; 2023 Jan; 152():106321. PubMed ID: 36463792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation.
    Lama N; Stanley RJ; Lama B; Maurya A; Nambisan A; Hagerty J; Phan T; Van Stoecker W
    J Imaging Inform Med; 2024 Aug; 37(4):1812-1823. PubMed ID: 38409610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamically aggregating MLPs and CNNs for skin lesion segmentation with geometry regularization.
    Qin C; Zheng B; Zeng J; Chen Z; Zhai Y; Genovese A; Piuri V; Scotti F
    Comput Methods Programs Biomed; 2023 Aug; 238():107601. PubMed ID: 37210926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
    Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G
    Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-automatic segmentation of skin lesions based on superpixels and hybrid texture information.
    Santos ESD; de M S Veras R; R T Aires K; M B F Portela H; Braz Junior G; Santos JD; Tavares JMRS
    Med Image Anal; 2022 Apr; 77():102363. PubMed ID: 35066394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network.
    Zafar K; Gilani SO; Waris A; Ahmed A; Jamil M; Khan MN; Sohail Kashif A
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SLT-Net: A codec network for skin lesion segmentation.
    Feng K; Ren L; Wang G; Wang H; Li Y
    Comput Biol Med; 2022 Sep; 148():105942. PubMed ID: 35964466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skin Lesion Segmentation in Dermoscopic Images with Noisy Data.
    Lama N; Hagerty J; Nambisan A; Stanley RJ; Van Stoecker W
    J Digit Imaging; 2023 Aug; 36(4):1712-1722. PubMed ID: 37020149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIL-Net: A Semi-Isotropic L-shaped network for dermoscopic image segmentation.
    Zhang Z; Jiang Y; Qiao H; Wang M; Yan W; Chen J
    Comput Biol Med; 2022 Nov; 150():106146. PubMed ID: 36228460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MASDF-Net: A Multi-Attention Codec Network with Selective and Dynamic Fusion for Skin Lesion Segmentation.
    Fu J; Deng H
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation.
    Wu H; Chen S; Chen G; Wang W; Lei B; Wen Z
    Med Image Anal; 2022 Feb; 76():102327. PubMed ID: 34923250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images.
    Kaur R; GholamHosseini H; Sinha R; Lindén M
    BMC Med Imaging; 2022 May; 22(1):103. PubMed ID: 35644612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TG-Net: Using text prompts for improved skin lesion segmentation.
    Meng X; Yu C; Zhang Z; Zhang X; Wang M
    Comput Biol Med; 2024 Sep; 179():108819. PubMed ID: 38964245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
    Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning based skin lesion segmentation method with novel borders and hair removal techniques.
    Rehman M; Ali M; Obayya M; Asghar J; Hussain L; K Nour M; Negm N; Mustafa Hilal A
    PLoS One; 2022; 17(11):e0275781. PubMed ID: 36355845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CI-Net: Clinical-Inspired Network for Automated Skin Lesion Recognition.
    Liu Z; Xiong R; Jiang T
    IEEE Trans Med Imaging; 2023 Mar; 42(3):619-632. PubMed ID: 36279355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanoma segmentation using deep learning with test-time augmentations and conditional random fields.
    Ashraf H; Waris A; Ghafoor MF; Gilani SO; Niazi IK
    Sci Rep; 2022 Mar; 12(1):3948. PubMed ID: 35273282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BLA-Net:Boundary learning assisted network for skin lesion segmentation.
    Feng R; Zhuo L; Li X; Yin H; Wang Z
    Comput Methods Programs Biomed; 2022 Nov; 226():107190. PubMed ID: 36288686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hierarchical three-step superpixels and deep learning framework for skin lesion classification.
    Afza F; Sharif M; Mittal M; Khan MA; Jude Hemanth D
    Methods; 2022 Jun; 202():88-102. PubMed ID: 33610692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.