These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Single-acquisition chemical-shift imaging of a binary system with use of stimulated echoes. Yeung HN; Kormos DW; Sebok DA Radiology; 1988 May; 167(2):537-40. PubMed ID: 3357968 [TBL] [Abstract][Full Text] [Related]
23. A spin echo chemical shift MR imaging technique. Joseph PM J Comput Assist Tomogr; 1985; 9(4):651-8. PubMed ID: 4019825 [TBL] [Abstract][Full Text] [Related]
24. Improved MR imaging of the orbit at 1.5 T with surface coils. Schenck JF; Hart HR; Foster TH; Edelstein WA; Bottomley PA; Redington RW; Hardy CJ; Zimmerman RA; Bilaniuk LT AJR Am J Roentgenol; 1985 May; 144(5):1033-6. PubMed ID: 3872559 [TBL] [Abstract][Full Text] [Related]
25. MR vascular imaging with a fast gradient refocusing pulse sequence and reformatted images from transaxial sections. Gullberg GT; Wehrli FW; Shimakawa A; Simons MA Radiology; 1987 Oct; 165(1):241-6. PubMed ID: 3628776 [TBL] [Abstract][Full Text] [Related]
26. Fast three-point dixon MR imaging using low-resolution images for phase correction: a comparison with chemical shift selective fat suppression for pediatric musculoskeletal imaging. Rybicki FJ; Chung T; Reid J; Jaramillo D; Mulkern RV; Ma J AJR Am J Roentgenol; 2001 Nov; 177(5):1019-23. PubMed ID: 11641161 [TBL] [Abstract][Full Text] [Related]
27. True water and fat MR imaging with use of multiple-echo acquisition. Williams SC; Horsfield MA; Hall LD Radiology; 1989 Oct; 173(1):249-53. PubMed ID: 2781016 [TBL] [Abstract][Full Text] [Related]
28. On the utility of spectroscopic imaging as a tool for generating geometrically accurate MR images and parameter maps in the presence of field inhomogeneities and chemical shift effects. Bakker CJ; de Leeuw H; van de Maat GH; van Gorp JS; Bouwman JG; Seevinck PR Magn Reson Imaging; 2013 Jan; 31(1):86-95. PubMed ID: 22898694 [TBL] [Abstract][Full Text] [Related]
29. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) of the wrist and finger at 3T: comparison with chemical shift selective fat suppression images. Aoki T; Yamashita Y; Oki H; Takahashi H; Hayashida Y; Saito K; Tanaka Y; Korogi Y J Magn Reson Imaging; 2013 Mar; 37(3):733-8. PubMed ID: 22911970 [TBL] [Abstract][Full Text] [Related]
30. Diffusion MR imaging: clinical applications. Le Bihan D; Turner R; Douek P; Patronas N AJR Am J Roentgenol; 1992 Sep; 159(3):591-9. PubMed ID: 1503032 [TBL] [Abstract][Full Text] [Related]
31. Orbital imaging: factors determining magnetic resonance imaging appearance. Wehrli FW; Kanal E Radiol Clin North Am; 1987 May; 25(3):419-27. PubMed ID: 3554330 [TBL] [Abstract][Full Text] [Related]
32. Stimulated anti-echo selection in spatially localized NMR spectroscopy. Zhu JM; Smith IC J Magn Reson; 1999 Jan; 136(1):1-5. PubMed ID: 9887282 [TBL] [Abstract][Full Text] [Related]
33. Heteronuclear cross polarization for enhanced sensitivity of in vivo 13C MR spectroscopy on a clinical 1.5 T MR system. van den Bergh AJ; van den Boogert HJ; Heerschap A J Magn Reson; 1998 Nov; 135(1):93-8. PubMed ID: 9799681 [TBL] [Abstract][Full Text] [Related]
34. Abdominal MR imaging at 3T. Merkle EM; Dale BM; Paulson EK Magn Reson Imaging Clin N Am; 2006 Feb; 14(1):17-26. PubMed ID: 16530632 [TBL] [Abstract][Full Text] [Related]
35. Fat suppression at 7T using a surface coil: application of an adiabatic half-passage chemical shift selective radiofrequency pulse. Yongbi MN; Ding S; Dunn JF J Magn Reson Imaging; 1995; 5(6):768-72. PubMed ID: 8748500 [TBL] [Abstract][Full Text] [Related]
37. Region and volume dependencies in spectral line width assessed by 1H 2D MR chemical shift imaging in the monkey brain at 7 T. Juchem C; Merkle H; Schick F; Logothetis NK; Pfeuffer J Magn Reson Imaging; 2004 Dec; 22(10):1373-83. PubMed ID: 15707787 [TBL] [Abstract][Full Text] [Related]