These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37379331)

  • 21. Examination of the short-range structure of molten salts: ThF
    Ocádiz-Flores JA; Gheribi AE; Vlieland J; de Haas D; Dardenne K; Rothe J; Konings RJM; Smith AL
    Phys Chem Chem Phys; 2021 May; 23(18):11091-11103. PubMed ID: 33949518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Actinide Molten Salts: A Machine-Learning Potential Molecular Dynamics Study.
    Nguyen MT; Rousseau R; Paviet PD; Glezakou VA
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53398-53408. PubMed ID: 34494435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvation of uranyl(II), europium(III) and europium(II) cations in "basic" room-temperature ionic liquids: a theoretical study.
    Chaumont A; Wipff G
    Chemistry; 2004 Aug; 10(16):3919-30. PubMed ID: 15317055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A theoretical investigation of gadolinium (III) solvation in molten salts.
    Hazebroucq S; Picard GS; Adamo C
    J Chem Phys; 2005 Jun; 122(22):224512. PubMed ID: 15974696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coordination and thermophysical properties of select trivalent lanthanides in LiCl-KCl.
    Fuller J; Moon J; Zhang J; Chidambaram D; An Q
    Phys Chem Chem Phys; 2022 Jun; 24(21):13102-13109. PubMed ID: 35588243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study.
    Manga VR; Swinteck N; Bringuier S; Lucas P; Deymier P; Muralidharan K
    J Chem Phys; 2016 Mar; 144(9):094501. PubMed ID: 26957165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elucidating Ionic Correlations Beyond Simple Charge Alternation in Molten MgCl
    Wu F; Roy S; Ivanov AS; Gill SK; Topsakal M; Dooryhee E; Abeykoon M; Kwon G; Gallington LC; Halstenberg P; Layne B; Ishii Y; Mahurin SM; Dai S; Bryantsev VS; Margulis CJ
    J Phys Chem Lett; 2019 Dec; 10(24):7603-7610. PubMed ID: 31738562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Connections between the Speciation and Solubility of Ni(II) and Co(II) in Molten ZnCl
    Gill SK; Huang J; Mausz J; Gakhar R; Roy S; Vila F; Topsakal M; Phillips WC; Layne B; Mahurin S; Halstenberg P; Dai S; Wishart JF; Bryantsev VS; Frenkel AI
    J Phys Chem B; 2020 Feb; 124(7):1253-1258. PubMed ID: 31977217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanocrystals in Molten Salts and Ionic Liquids: Experimental Observation of Ionic Correlations Extending beyond the Debye Length.
    Kamysbayev V; Srivastava V; Ludwig NB; Borkiewicz OJ; Zhang H; Ilavsky J; Lee B; Chapman KW; Vaikuntanathan S; Talapin DV
    ACS Nano; 2019 May; 13(5):5760-5770. PubMed ID: 30964280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionic Contraction across the Lanthanide Series Decreases the Temperature-Induced Disorder of the Water Coordination Sphere.
    Driscoll DM; Shiery RC; Balasubramanian M; Fulton JL; Cantu DC
    Inorg Chem; 2022 Jan; 61(1):287-294. PubMed ID: 34919399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic Fluctuation of U
    Li X; Song J; Shi S; Yan L; Zhang Z; Jiang T; Peng S
    J Phys Chem A; 2017 Jan; 121(3):571-578. PubMed ID: 28045530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical studies of structure and dynamics of molten salts: the LiF-ThF4 system.
    Liu JB; Chen X; Qiu YH; Xu CF; Schwarz WH; Li J
    J Phys Chem B; 2014 Dec; 118(48):13954-62. PubMed ID: 25361071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the local structure of molten ThF
    Sun J; Guo X; Zhou J; Dai J; Song S; Bao H; Lin J; Yu H; He S; Jiang F; Long D; Zhang L; Wang JQ
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1733-1741. PubMed ID: 31490165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Counterions on the Hydration Structure of Lanthanide Ions in Dilute Aqueous Solutions.
    Migliorati V; Serva A; Sessa F; Lapi A; D'Angelo P
    J Phys Chem B; 2018 Mar; 122(10):2779-2791. PubMed ID: 29481749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts.
    Yadav S; Chandra A
    J Chem Phys; 2017 Dec; 147(24):244503. PubMed ID: 29289137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydration of divalent lanthanides, Sm
    Arabzadeh H; Liu C; Acevedo O; Ren P; Yang W; Albrecht-Schönzart T
    J Comput Chem; 2022 Jul; 43(19):1286-1297. PubMed ID: 35648124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydration structure of salt solutions from ab initio molecular dynamics.
    Bankura A; Carnevale V; Klein ML
    J Chem Phys; 2013 Jan; 138(1):014501. PubMed ID: 23298049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local Aqueous Solvation Structure Around Ca(2+) During Ca(2+)···Cl(-) Pair Formation.
    Baer MD; Mundy CJ
    J Phys Chem B; 2016 Mar; 120(8):1885-93. PubMed ID: 26788746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uranyl coordination in ionic liquids: the competition between ionic liquid anions, uranyl counterions, and Cl- anions investigated by extended X-ray absorption fine structure and UV-visible spectroscopies and molecular dynamics simulations.
    Gaillard C; Chaumont A; Billard I; Hennig C; Ouadi A; Wipff G
    Inorg Chem; 2007 Jun; 46(12):4815-26. PubMed ID: 17503808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Coordination Chemistry of f-Block Elements in Molten Salts.
    Jiang S; Liu Y; Wang L; Chai Z; Shi WQ
    Chemistry; 2022 Oct; 28(60):e202201145. PubMed ID: 35838639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.