BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37379438)

  • 21. Asynchronous blockade of PD-L1 and CD155 by polymeric nanoparticles inhibits triple-negative breast cancer progression and metastasis.
    Chen C; Guo Q; Fu H; Yu J; Wang L; Sun Y; Zhang J; Duan Y
    Biomaterials; 2021 Aug; 275():120988. PubMed ID: 34186238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade.
    Zhou M; Luo C; Zhou Z; Li L; Huang Y
    J Control Release; 2021 Jun; 334():248-262. PubMed ID: 33915224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Immunosuppressive Microenvironment in BRCA1-IRIS-Overexpressing TNBC Tumors Is Induced by Bidirectional Interaction with Tumor-Associated Macrophages.
    Sami E; Paul BT; Koziol JA; ElShamy WM
    Cancer Res; 2020 Mar; 80(5):1102-1117. PubMed ID: 31911557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of the tumor immune microenvironment phenotypes in different breast cancers after neoadjuvant therapy.
    Han M; Li J; Wu S; Wu C; Yu Y; Liu Y
    Cancer Med; 2023 Feb; 12(3):2906-2917. PubMed ID: 36073303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clinicopathological significance of the immunologic signature (PDL1, FOXP3+ Tregs, TILs) in early stage triple-negative breast cancer treated with neoadjuvant chemotherapy.
    Abdelrahman AE; Rashed HE; MostafaToam ; Omar A; Abdelhamid MI; Matar I
    Ann Diagn Pathol; 2021 Apr; 51():151676. PubMed ID: 33360026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-Delivery Nanomicelles for Potentiating TNBC Immunotherapy by Synergetically Reshaping CAFs-Mediated Tumor Stroma and Reprogramming Immunosuppressive Microenvironment.
    Zhang Y; Han X; Wang K; Liu D; Ding X; Hu Z; Wang J
    Int J Nanomedicine; 2023; 18():4329-4346. PubMed ID: 37545872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Augmentation of antitumor function of tumor-infiltrating lymphocytes against triple-negative breast cancer by PD-1 blockade.
    Song H; Wang H; Gong M; Wu L; Liu X; Cao W; Gao X; Dou R; Chen Q; Hu H
    Cell Biol Int; 2022 Feb; 46(2):278-287. PubMed ID: 34854515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Converging focal radiation and immunotherapy in a preclinical model of triple negative breast cancer: contribution of VISTA blockade.
    Pilones KA; Hensler M; Daviaud C; Kraynak J; Fucikova J; Galluzzi L; Demaria S; Formenti SC
    Oncoimmunology; 2020 Oct; 9(1):1830524. PubMed ID: 33150045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anti-PD-1 Checkpoint Therapy Can Promote the Function and Survival of Regulatory T Cells.
    Vick SC; Kolupaev OV; Perou CM; Serody JS
    J Immunol; 2021 Nov; 207(10):2598-2607. PubMed ID: 34607937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment.
    Zeng Y; Li B; Liang Y; Reeves PM; Qu X; Ran C; Liu Q; Callahan MV; Sluder AE; Gelfand JA; Chen H; Poznansky MC
    FASEB J; 2019 May; 33(5):6596-6608. PubMed ID: 30802149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Remodeling of the tumor microenvironment via disrupting Blimp1
    Dixon ML; Luo L; Ghosh S; Grimes JM; Leavenworth JD; Leavenworth JW
    Mol Cancer; 2021 Nov; 20(1):150. PubMed ID: 34798898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PD-1 and CTLA-4 exert additive control of effector regulatory T cells at homeostasis.
    Pereira JA; Lanzar Z; Clark JT; Hart AP; Douglas BB; Shallberg L; O'Dea K; Christian DA; Hunter CA
    Front Immunol; 2023; 14():997376. PubMed ID: 36960049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-cell atlas reveals a distinct immune profile fostered by T cell-B cell crosstalk in triple negative breast cancer.
    Ding S; Qiao N; Zhu Q; Tong Y; Wang S; Chen X; Tian Q; Xiao Y; Shen K
    Cancer Commun (Lond); 2023 Jun; 43(6):661-684. PubMed ID: 37158690
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PD-1 blockade enhances radio-immunotherapy efficacy in murine tumor models.
    Zhuang Y; Li S; Wang H; Pi J; Xing Y; Li G
    J Cancer Res Clin Oncol; 2018 Oct; 144(10):1909-1920. PubMed ID: 30074066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CXCL14 Attenuates Triple-Negative Breast Cancer Progression by Regulating Immune Profiles of the Tumor Microenvironment in a T Cell-Dependent Manner.
    Gibbs C; So JY; Ahad A; Michalowski AM; Son DS; Li Y
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local, multimodal intralesional therapy renders distant brain metastases susceptible to PD-L1 blockade in a preclinical model of triple-negative breast cancer.
    Yokoi T; Oba T; Kajihara R; Abrams SI; Ito F
    Sci Rep; 2021 Nov; 11(1):21992. PubMed ID: 34754037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs.
    Lu L; Xu X; Zhang B; Zhang R; Ji H; Wang X
    J Transl Med; 2014 Feb; 12():36. PubMed ID: 24502656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interaction between the soluble programmed death ligand-1 (sPD-L1) and PD-1
    Li X; Du H; Zhan S; Liu W; Wang Z; Lan J; PuYang L; Wan Y; Qu Q; Wang S; Yang Y; Wang Q; Xie F
    Front Immunol; 2022; 13():830606. PubMed ID: 35935985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomarkers of Immune Checkpoint Blockade Response in Triple-Negative Breast Cancer.
    Isaacs J; Anders C; McArthur H; Force J
    Curr Treat Options Oncol; 2021 Mar; 22(5):38. PubMed ID: 33743085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SRC family kinase (SFK) inhibitor dasatinib improves the antitumor activity of anti-PD-1 in NSCLC models by inhibiting Treg cell conversion and proliferation.
    Redin E; Garmendia I; Lozano T; Serrano D; Senent Y; Redrado M; Villalba M; De Andrea CE; Exposito F; Ajona D; Ortiz-Espinosa S; Remirez A; Bertolo C; Sainz C; Garcia-Pedrero J; Pio R; Lasarte J; Agorreta J; Montuenga LM; Calvo A
    J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33658304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.