These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 37379485)
1. Generalized Nuclear-Electronic Orbital Multistate Density Functional Theory for Multiple Proton Transfer Processes. Dickinson JA; Yu Q; Hammes-Schiffer S J Phys Chem Lett; 2023 Jul; 14(26):6170-6178. PubMed ID: 37379485 [TBL] [Abstract][Full Text] [Related]
2. Nonadiabatic Hydrogen Tunneling Dynamics for Multiple Proton Transfer Processes with Generalized Nuclear-Electronic Orbital Multistate Density Functional Theory. Dickinson JA; Hammes-Schiffer S J Chem Theory Comput; 2024 Sep; ():. PubMed ID: 39259939 [TBL] [Abstract][Full Text] [Related]
3. Analytical gradients for nuclear-electronic orbital multistate density functional theory: Geometry optimizations and reaction paths. Yu Q; Schneider PE; Hammes-Schiffer S J Chem Phys; 2022 Mar; 156(11):114115. PubMed ID: 35317589 [TBL] [Abstract][Full Text] [Related]
4. Nuclear-Electronic Orbital Multistate Density Functional Theory. Yu Q; Hammes-Schiffer S J Phys Chem Lett; 2020 Dec; 11(23):10106-10113. PubMed ID: 33191754 [TBL] [Abstract][Full Text] [Related]
5. Direct Dynamics with Nuclear-Electronic Orbital Density Functional Theory. Tao Z; Yu Q; Roy S; Hammes-Schiffer S Acc Chem Res; 2021 Nov; 54(22):4131-4141. PubMed ID: 34726895 [TBL] [Abstract][Full Text] [Related]
6. Nonadiabatic Dynamics of Hydrogen Tunneling with Nuclear-Electronic Orbital Multistate Density Functional Theory. Yu Q; Roy S; Hammes-Schiffer S J Chem Theory Comput; 2022 Dec; 18(12):7132-7141. PubMed ID: 36378867 [TBL] [Abstract][Full Text] [Related]
7. Nuclear-electronic orbital nonorthogonal configuration interaction approach. Skone JH; Pak MV; Hammes-Schiffer S J Chem Phys; 2005 Oct; 123(13):134108. PubMed ID: 16223276 [TBL] [Abstract][Full Text] [Related]
8. Analytical Gradients for Nuclear-Electronic Orbital Time-Dependent Density Functional Theory: Excited-State Geometry Optimizations and Adiabatic Excitation Energies. Tao Z; Roy S; Schneider PE; Pavošević F; Hammes-Schiffer S J Chem Theory Comput; 2021 Aug; 17(8):5110-5122. PubMed ID: 34260237 [TBL] [Abstract][Full Text] [Related]
9. Multicomponent density functional theory: Including the density gradient in the electron-proton correlation functional for hydrogen and deuterium. Tao Z; Yang Y; Hammes-Schiffer S J Chem Phys; 2019 Sep; 151(12):124102. PubMed ID: 31575164 [TBL] [Abstract][Full Text] [Related]
10. Multicomponent Orbital-Optimized Perturbation Theory with Density Fitting: Anharmonic Zero-Point Energies in Protonated Water Clusters. Fetherolf JH; Pavošević F; Tao Z; Hammes-Schiffer S J Phys Chem Lett; 2022 Jun; 13(24):5563-5570. PubMed ID: 35696537 [TBL] [Abstract][Full Text] [Related]
11. Combining the nuclear-electronic orbital approach with vibronic coupling theory: calculation of the tunneling splitting for malonaldehyde. Hazra A; Skone JH; Hammes-Schiffer S J Chem Phys; 2009 Feb; 130(5):054108. PubMed ID: 19206959 [TBL] [Abstract][Full Text] [Related]
12. Molecular Vibrational Frequencies with Multiple Quantum Protons within the Nuclear-Electronic Orbital Framework. Culpitt T; Yang Y; Schneider PE; Pavošević F; Hammes-Schiffer S J Chem Theory Comput; 2019 Dec; 15(12):6840-6849. PubMed ID: 31618582 [TBL] [Abstract][Full Text] [Related]
13. Explicit dynamical electron-proton correlation in the nuclear-electronic orbital framework. Swalina C; Pak MV; Chakraborty A; Hammes-Schiffer S J Phys Chem A; 2006 Aug; 110(33):9983-7. PubMed ID: 16913669 [TBL] [Abstract][Full Text] [Related]
14. Multicomponent Coupled Cluster Singles and Doubles Theory within the Nuclear-Electronic Orbital Framework. Pavošević F; Culpitt T; Hammes-Schiffer S J Chem Theory Comput; 2019 Jan; 15(1):338-347. PubMed ID: 30525610 [TBL] [Abstract][Full Text] [Related]
15. Multicomponent Coupled Cluster Singles and Doubles with Density Fitting: Protonated Water Tetramers with Quantized Protons. Pavošević F; Tao Z; Hammes-Schiffer S J Phys Chem Lett; 2021 Feb; 12(6):1631-1637. PubMed ID: 33555187 [TBL] [Abstract][Full Text] [Related]
16. Nuclear-Electronic Orbital Time-Dependent Configuration Interaction Method. Garner SM; Upadhyay S; Li X; Hammes-Schiffer S J Phys Chem Lett; 2024 Jun; 15(23):6017-6023. PubMed ID: 38815051 [TBL] [Abstract][Full Text] [Related]
17. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear-Electronic Orbital Method. Pavošević F; Culpitt T; Hammes-Schiffer S Chem Rev; 2020 May; 120(9):4222-4253. PubMed ID: 32283015 [TBL] [Abstract][Full Text] [Related]
18. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies. Yang Y; Culpitt T; Hammes-Schiffer S J Phys Chem Lett; 2018 Apr; 9(7):1765-1770. PubMed ID: 29553738 [TBL] [Abstract][Full Text] [Related]
19. Electronic Born-Oppenheimer approximation in nuclear-electronic orbital dynamics. Li TE; Hammes-Schiffer S J Chem Phys; 2023 Mar; 158(11):114118. PubMed ID: 36948810 [TBL] [Abstract][Full Text] [Related]
20. Enhancing the applicability of multicomponent time-dependent density functional theory. Culpitt T; Yang Y; Pavošević F; Tao Z; Hammes-Schiffer S J Chem Phys; 2019 May; 150(20):201101. PubMed ID: 31153172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]