BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37379662)

  • 1. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation.
    Bode K; Hauri-Hohl M; Jaquet V; Weyd H
    Redox Biol; 2023 Aug; 64():102795. PubMed ID: 37379662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intersecting Stories of the Phagocyte NADPH Oxidase and Chronic Granulomatous Disease.
    Nauseef WM; Clark RA
    Methods Mol Biol; 2019; 1982():3-16. PubMed ID: 31172463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phagocyte NADPH oxidase and specific immunity.
    Cachat J; Deffert C; Hugues S; Krause KH
    Clin Sci (Lond); 2015 May; 128(10):635-48. PubMed ID: 25760962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance.
    Nguyen GT; Green ER; Mecsas J
    Front Cell Infect Microbiol; 2017; 7():373. PubMed ID: 28890882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nox2/cybb zebrafish mutant with defective myeloid cell reactive oxygen species production displays normal initial neutrophil recruitment to sterile tail injuries.
    Isiaku AI; Zhang Z; Pazhakh V; Lieschke GJ
    G3 (Bethesda); 2024 Jun; 14(6):. PubMed ID: 38696730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apocynin prevents GM-CSF-induced-ERK1/2 activation and -neutrophil survival independently of its inhibitory effect on the phagocyte NADPH oxidase NOX2.
    Pintard C; Ben Khemis M; Liu D; Dang PM; Hurtado-Nedelec M; El-Benna J
    Biochem Pharmacol; 2020 Jul; 177():113950. PubMed ID: 32251677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells.
    Kotsias F; Hoffmann E; Amigorena S; Savina A
    Antioxid Redox Signal; 2013 Feb; 18(6):714-29. PubMed ID: 22827577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NAD(P)H Oxidase Activity in the Small Intestine Is Predominantly Found in Enterocytes, Not Professional Phagocytes.
    Lindquist RL; Bayat-Sarmadi J; Leben R; Niesner R; Hauser AE
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The protein kinase A negatively regulates reactive oxygen species production by phosphorylating gp91phox/NOX2 in human neutrophils.
    Raad H; Mouawia H; Hassan H; El-Seblani M; Arabi-Derkawi R; Boussetta T; Gougerot-Pocidalo MA; Dang PM; El-Benna J
    Free Radic Biol Med; 2020 Nov; 160():19-27. PubMed ID: 32758662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dual role of Reactive Oxygen Species in autoimmune and inflammatory diseases: evidence from preclinical models.
    Hoffmann MH; Griffiths HR
    Free Radic Biol Med; 2018 Sep; 125():62-71. PubMed ID: 29550327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic Testing for Chronic Granulomatous Disease.
    Kuhns DB
    Methods Mol Biol; 2019; 1982():543-571. PubMed ID: 31172495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic Granulomatous Disease.
    Roos D
    Methods Mol Biol; 2019; 1982():531-542. PubMed ID: 31172494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperinflammation of chronic granulomatous disease is abolished by NOX2 reconstitution in macrophages and dendritic cells.
    Deffert C; Carnesecchi S; Yuan H; Rougemont AL; Kelkka T; Holmdahl R; Krause KH; Schäppi MG
    J Pathol; 2012 Nov; 228(3):341-50. PubMed ID: 22685019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity.
    Noubade R; Wong K; Ota N; Rutz S; Eidenschenk C; Valdez PA; Ding J; Peng I; Sebrell A; Caplazi P; DeVoss J; Soriano RH; Sai T; Lu R; Modrusan Z; Hackney J; Ouyang W
    Nature; 2014 May; 509(7499):235-9. PubMed ID: 24739962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In adult X-CGD patients, regulatory T cells are expanded while activated T cells display a NOX2-independent ROS increase.
    Cammarata I; Pinna V; Pacella I; Rotella I; Soresina A; Badolato R; Plebani A; Pignata C; Cirillo E; Zicari AM; Violi F; Carnevale R; Loffredo L; Piconese S
    Immunol Lett; 2024 Apr; 266():106839. PubMed ID: 38309375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease.
    Fernandez-Boyanapalli RF; Frasch SC; Thomas SM; Malcolm KC; Nicks M; Harbeck RJ; Jakubzick CV; Nemenoff R; Henson PM; Holland SM; Bratton DL
    J Allergy Clin Immunol; 2015 Feb; 135(2):517-527.e12. PubMed ID: 25498313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic effects of proteoliposomes on X-linked chronic granulomatous disease: proof of concept using macrophages differentiated from patient-specific induced pluripotent stem cells.
    Brault J; Vaganay G; Le Roy A; Lenormand JL; Cortes S; Stasia MJ
    Int J Nanomedicine; 2017; 12():2161-2177. PubMed ID: 28356734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives.
    Dang PM; Rolas L; El-Benna J
    Antioxid Redox Signal; 2020 Aug; 33(5):354-373. PubMed ID: 31968991
    [No Abstract]   [Full Text] [Related]  

  • 19. Class I phosphoinositide 3-kinases control sustained NADPH oxidase activation in adherent neutrophils.
    Song Z; Hudik E; Le Bars R; Roux B; Dang PM; El Benna J; Nüsse O; Dupré-Crochet S
    Biochem Pharmacol; 2020 Aug; 178():114088. PubMed ID: 32531347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of NADPH oxidase in modulating neutrophil effector responses.
    Zeng MY; Miralda I; Armstrong CL; Uriarte SM; Bagaitkar J
    Mol Oral Microbiol; 2019 Apr; 34(2):27-38. PubMed ID: 30632295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.