These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37379875)

  • 1. Degradation mechanism of microplastics and potential risks during sewage sludge co-composting: A comprehensive review.
    Sun X; Anoopkumar AN; Madhavan A; Binod P; Pandey A; Sindhu R; Awasthi MK
    Environ Pollut; 2023 Sep; 333():122113. PubMed ID: 37379875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microplastics from lagooning sludge to composts as revealed by fluorescent staining- image analysis, Raman spectroscopy and pyrolysis-GC/MS.
    El Hayany B; El Fels L; Quénéa K; Dignac MF; Rumpel C; Gupta VK; Hafidi M
    J Environ Manage; 2020 Dec; 275():111249. PubMed ID: 32836169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence, analysis of microplastics in sewage sludge and their fate during composting: A literature review.
    El Hayany B; Rumpel C; Hafidi M; El Fels L
    J Environ Manage; 2022 Sep; 317():115364. PubMed ID: 35617865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the influence mechanisms of polystyrene-microplastics on sewage sludge composting.
    Ma C; Chen X; Zheng G; Liu N; Zhao J; Zhang H
    Bioresour Technol; 2022 Oct; 362():127798. PubMed ID: 35995344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of typical sludge treatment on microplastics in China-Characteristics, abundance and micro-morphological evidence.
    Li XY; Liu HT; Wang LX; Guo HN; Zhang J; Gao D
    Sci Total Environ; 2022 Jun; 826():154206. PubMed ID: 35240179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fate of microplastic in sludge management systems.
    Cydzik-Kwiatkowska A; Milojevic N; Jachimowicz P
    Sci Total Environ; 2022 Nov; 848():157466. PubMed ID: 35868371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced degradation of microplastics during sludge composting via microbially-driven Fenton reaction.
    Xing R; Sun H; Du X; Lin H; Qin S; Chen Z; Zhou S
    J Hazard Mater; 2023 May; 449():131031. PubMed ID: 36821904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effects of biochar derived from different sources on greenhouse gas emissions and microplastics mitigation during sewage sludge composting.
    Zhou Y; Zhao H; Lu Z; Ren X; Zhang Z; Wang Q
    Bioresour Technol; 2023 Nov; 387():129556. PubMed ID: 37517712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effects of Fe-based nanomaterial catalyst on humic substances formation and microplastics mitigation during sewage sludge composting.
    Liu Y; Xu J; Li X; Zhou W; Cui X; Tian P; Yu H; Wang X
    Bioresour Technol; 2024 Mar; 395():130371. PubMed ID: 38278455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radicals accelerate in situ ageing of microplastics during sludge composting.
    Xing R; Chen Z; Sun H; Liao H; Qin S; Liu W; Zhang Y; Chen Z; Zhou S
    J Hazard Mater; 2022 May; 429():128405. PubMed ID: 35236030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil.
    Gao D; Li XY; Liu HT
    Sci Total Environ; 2020 Nov; 742():140355. PubMed ID: 32721713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology.
    Chen Z; Zhao W; Xing R; Xie S; Yang X; Cui P; Lü J; Liao H; Yu Z; Wang S; Zhou S
    J Hazard Mater; 2020 Feb; 384():121271. PubMed ID: 31611021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of microplastics in sludge impacts on the vermicomposting.
    Zhong H; Yang S; Zhu L; Liu C; Zhang Y; Zhang Y
    Bioresour Technol; 2021 Apr; 326():124777. PubMed ID: 33540214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of excess sludge composting process, environmentally persistent free radicals, and microplastics on antibiotics degradation efficiency of aging biochar.
    Zhang Y; Sun Y; He R; Zhao J; Wang J; Yu T; Zhang X; Bildyukevich AV
    Bioresour Technol; 2024 Feb; 393():130070. PubMed ID: 37984667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microplastics in sewage sludge: Distribution, toxicity, identification methods, and engineered technologies.
    Nguyen MK; Hadi M; Lin C; Nguyen HL; Thai VB; Hoang HG; Vo DN; Tran HT
    Chemosphere; 2022 Dec; 308(Pt 3):136455. PubMed ID: 36116626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microplastic Degradation in Sewage Sludge by Hydrothermal Carbonization: Efficiency and Mechanisms.
    Xu Z; Bai X
    Chemosphere; 2022 Jun; 297():134203. PubMed ID: 35248590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microplastics removal from a primary settler tank in a wastewater treatment plant and estimations of contamination onto European agricultural land via sewage sludge recycling.
    Lofty J; Muhawenimana V; Wilson CAME; Ouro P
    Environ Pollut; 2022 Jul; 304():119198. PubMed ID: 35341817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microplastics in Sewage Sludge: A review.
    Casella C; Sol D; Laca A; Díaz M
    Environ Sci Pollut Res Int; 2023 May; 30(23):63382-63415. PubMed ID: 37079238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in physicochemical and leachate characteristics of microplastics during hydrothermal treatment of sewage sludge.
    Li X; Wang X; Chen L; Huang X; Pan F; Liu L; Dong B; Liu H; Li H; Dai X; Hur J
    Water Res; 2022 Aug; 222():118876. PubMed ID: 35914504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic composts as A vehicle for the entry of microplastics into the environment: A comprehensive review.
    Le VR; Nguyen MK; Nguyen HL; Lin C; Rakib MRJ; Thai VA; Le VG; Malafaia G; Idris AM
    Sci Total Environ; 2023 Sep; 892():164758. PubMed ID: 37308024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.