These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37379918)

  • 1. Catchment characteristics control boreal mire nutrient regime and vegetation patterns over ~5000 years of landscape development.
    Ehnvall B; Ågren AM; Nilsson MB; Ratcliffe JL; Noumonvi KD; Peichl M; Lidberg W; Giesler R; Mörth CM; Öquist MG
    Sci Total Environ; 2023 Oct; 895():165132. PubMed ID: 37379918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peatland plant communities under global change: negative feedback loops counteract shifts in species composition.
    Hedwall PO; Brunet J; Rydin H
    Ecology; 2017 Jan; 98(1):150-161. PubMed ID: 28052390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrology of peat-forming wetlands in Scotland.
    Bragg OM
    Sci Total Environ; 2002 Jul; 294(1-3):111-29. PubMed ID: 12169001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of power line rights-of-way as an alternative habitat for declined mire butterflies.
    Lensu T; Komonen A; Hiltula O; Päivinen J; Saari V; Kotiaho JS
    J Environ Manage; 2011 Oct; 92(10):2539-46. PubMed ID: 21664036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide.
    McPartland MY; Kane ES; Falkowski MJ; Kolka R; Turetsky MR; Palik B; Montgomery RA
    Glob Chang Biol; 2019 Jan; 25(1):93-107. PubMed ID: 30295397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Plant species diversity of
    Wang M; Li XL; Dong YM; Wang SZ; Liu B; Jiang M; Wang GD
    Ying Yong Sheng Tai Xue Bao; 2021 Jun; 32(6):2138-2146. PubMed ID: 34212620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane flux dynamics during mire succession.
    Leppälä M; Oksanen J; Tuittila ES
    Oecologia; 2011 Feb; 165(2):489-99. PubMed ID: 20803033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated vegetation succession but no hydrological change in a boreal fen during 20 years of recent climate change.
    Kolari THM; Korpelainen P; Kumpula T; Tahvanainen T
    Ecol Evol; 2021 Jun; 11(12):7602-7621. PubMed ID: 34188838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach.
    Mzobe P; Berggren M; Pilesjö P; Lundin E; Olefeldt D; Roulet NT; Persson A
    PLoS One; 2018; 13(7):e0199608. PubMed ID: 29979688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eco-Hydrological Footprint of a River Basin in Western Ghats.
    Ramachandra TV; Vinay S; Bharath S; Shashishankar A
    Yale J Biol Med; 2018 Dec; 91(4):431-444. PubMed ID: 30588209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference of future bog succession trajectory from spatial chronosequence of changing aapa mires.
    Kolari THM; Tahvanainen T
    Ecol Evol; 2023 Apr; 13(4):e9988. PubMed ID: 37082320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape.
    Lausch A; Pause M; Merbach I; Zacharias S; Doktor D; Volk M; Seppelt R
    Environ Monit Assess; 2013 Feb; 185(2):1215-35. PubMed ID: 22527462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of vegetation change using NDVI, LST, and carbon analyses in Çankırı Karatekin University, Turkey.
    Şahin Körmeçli P; Seçkin Gündoğan G
    Environ Monit Assess; 2024 Mar; 196(3):331. PubMed ID: 38429472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronous wildfire activity rise and mire deforestation at the triassic-jurassic boundary.
    Petersen HI; Lindström S
    PLoS One; 2012; 7(10):e47236. PubMed ID: 23077574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing remote sensing as a tool to monitor hydrological stress in Irish catchments with Freshwater Pearl Mussel populations.
    Kuemmerlen M; Moorkens EA; Piggott JJ
    Sci Total Environ; 2022 Feb; 806(Pt 4):150807. PubMed ID: 34626624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrological control of organic carbon support for bacterial growth in boreal headwater streams.
    Berggren M; Laudon H; Jansson M
    Microb Ecol; 2009 Jan; 57(1):170-8. PubMed ID: 18661114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of terrestrial productivity and hydrology in regulating aquatic dissolved organic carbon concentrations in boreal catchments.
    Zhu X; Chen L; Pumpanen J; Ojala A; Zobitz J; Zhou X; Laudon H; Palviainen M; Neitola K; Berninger F
    Glob Chang Biol; 2022 Apr; 28(8):2764-2778. PubMed ID: 35060250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using diatoms and physical and chemical parameters to monitor cow-pasture impact in peat cores from mountain mires.
    Cid-Rodríguez M; Cantonati M; Spitale D; Galluzzi G; Zaccone C
    Sci Total Environ; 2024 May; 926():171779. PubMed ID: 38508254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014.
    Varner RK; Crill PM; Frolking S; McCalley CK; Burke SA; Chanton JP; Holmes ME; ; Saleska S; Palace MW
    Philos Trans A Math Phys Eng Sci; 2022 Jan; 380(2215):20210022. PubMed ID: 34865532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.