These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37379976)

  • 1. Effects of inorganic ions with different concentrations on the nanofiltration separation performance of perfluorobutane sulfonic acid (PFBS).
    Wang J; Ji Z; Fan P; Duan J; Xiong J; Liu Z; Hou Y; Wang N
    Chemosphere; 2023 Oct; 337():139334. PubMed ID: 37379976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection.
    Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-channel capillary NF membrane with PAMAM-MWCNT-embedded inner polyamide skin layer for heavy metals removal.
    Zhang HZ; Xu ZL; Sun JY
    RSC Adv; 2018 Aug; 8(51):29455-29463. PubMed ID: 35548001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Chemical Cleaning on Physicochemical Characteristics and Ion Rejection by Thin Film Composite Nanofiltration Membranes.
    Wadekar SS; Wang Y; Lokare OR; Vidic RD
    Environ Sci Technol; 2019 Sep; 53(17):10166-10176. PubMed ID: 31369248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of perfluorobutane sulfonate and perfluorooctane sulfonate on lipid homeostasis in mouse liver.
    Chen L; Liu Y; Mu H; Li H; Liu S; Zhu M; Bu Y; Wu B
    Environ Pollut; 2022 Dec; 315():120403. PubMed ID: 36228861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rejection efficiency of water quality parameters by reverse osmosis and nanofiltration membranes.
    Peng W; Escobar IC
    Environ Sci Technol; 2003 Oct; 37(19):4435-41. PubMed ID: 14572097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploitation of Amine Groups Cooped up in Polyamide Nanofiltration Membranes to Achieve High Rejection of Micropollutants and High Permeance of Divalent Cations.
    Gao Y; Wang K; Wang XM; Huang X
    Environ Sci Technol; 2022 Aug; 56(15):10954-10962. PubMed ID: 35819002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectrocatalytic modification of nanofiltration membranes with SrF
    Zheng H; Meng X; Wu J; Liu D; Huo S
    Chemosphere; 2023 Nov; 342():140152. PubMed ID: 37714470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel nanofiltration membranes consisting of a sulfonated pentablock copolymer rejection layer for heavy metal removal.
    Thong Z; Han G; Cui Y; Gao J; Chung TS; Chan SY; Wei S
    Environ Sci Technol; 2014 Dec; 48(23):13880-7. PubMed ID: 25369240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NaHCO
    Long L; Peng LE; Zhou S; Gan Q; Li X; Jiang J; Han J; Zhang X; Guo H; Tang CY
    Water Res; 2023 Aug; 242():120255. PubMed ID: 37356158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview.
    Suhalim NS; Kasim N; Mahmoudi E; Shamsudin IJ; Mohammad AW; Mohamed Zuki F; Jamari NL
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery.
    Boo C; Wang Y; Zucker I; Choo Y; Osuji CO; Elimelech M
    Environ Sci Technol; 2018 Jul; 52(13):7279-7288. PubMed ID: 29851340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of solute-solute interactions and cake enhanced concentration polarization during removal of pharmaceuticals from urban wastewater by nanofiltration.
    Azaïs A; Mendret J; Petit E; Brosillon S
    Water Res; 2016 Nov; 104():156-167. PubMed ID: 27522026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Active Layer on Separation Potentials of Nanofiltration Membranes for Inorganic Ions.
    Wadekar SS; Vidic RD
    Environ Sci Technol; 2017 May; 51(10):5658-5665. PubMed ID: 28414440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining phthalimide innate of a positive-charge nanofiltration membrane for high selectivity and rejection for bivalent cations.
    Wang Z; Cao J; Zhang F; Zhang X; Tan X
    Water Sci Technol; 2023 Jun; 87(11):2944-2955. PubMed ID: 37318934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges.
    Castaño Osorio S; Biesheuvel PM; Spruijt E; Dykstra JE; van der Wal A
    Water Res; 2022 Oct; 225():119130. PubMed ID: 36240724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positively charged nanofiltration membrane synthesis, transport models, and lanthanides separation.
    Léniz-Pizarro F; Liu C; Colburn A; Escobar IC; Bhattacharyya D
    J Memb Sci; 2021 Feb; 620():. PubMed ID: 35002049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nanofiltration membrane prepared by PDA-C
    Bi Q; Zhang C; Liu J; Cheng Q; Xu S
    Water Sci Technol; 2020 Jan; 81(2):253-264. PubMed ID: 32333658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Ionic Charge Density in Donnan Exclusion of Monovalent Anions by Nanofiltration.
    Epsztein R; Shaulsky E; Dizge N; Warsinger DM; Elimelech M
    Environ Sci Technol; 2018 Apr; 52(7):4108-4116. PubMed ID: 29510032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.