BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37380148)

  • 21. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive nonlocal means filtering based on local noise level for CT denoising.
    Li Z; Yu L; Trzasko JD; Lake DS; Blezek DJ; Fletcher JG; McCollough CH; Manduca A
    Med Phys; 2014 Jan; 41(1):011908. PubMed ID: 24387516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A general framework of noise suppression in material decomposition for dual-energy CT.
    Petrongolo M; Dong X; Zhu L
    Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Statistical image-domain multimaterial decomposition for dual-energy CT.
    Xue Y; Ruan R; Hu X; Kuang Y; Wang J; Long Y; Niu T
    Med Phys; 2017 Mar; 44(3):886-901. PubMed ID: 28060999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesizing images from multiple kernels using a deep convolutional neural network.
    Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH
    Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics.
    Higaki T; Nakamura Y; Zhou J; Yu Z; Nemoto T; Tatsugami F; Awai K
    Acad Radiol; 2020 Jan; 27(1):82-87. PubMed ID: 31818389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network.
    Dinkla AM; Florkow MC; Maspero M; Savenije MHF; Zijlstra F; Doornaert PAH; van Stralen M; Philippens MEP; van den Berg CAT; Seevinck PR
    Med Phys; 2019 Sep; 46(9):4095-4104. PubMed ID: 31206701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. X-ray Cherenkov-luminescence tomography reconstruction with a three-component deep learning algorithm: Swin transformer, convolutional neural network, and locality module.
    Feng J; Zhang H; Geng M; Chen H; Jia K; Sun Z; Li Z; Cao X; Pogue BW
    J Biomed Opt; 2023 Feb; 28(2):026004. PubMed ID: 36818584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feasibility of multi-contrast imaging on dual-source photon counting detector (PCD) CT: An initial phantom study.
    Tao S; Rajendran K; McCollough CH; Leng S
    Med Phys; 2019 Sep; 46(9):4105-4115. PubMed ID: 31215659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A conventional-to-spectral CT image translation augmentation workflow for robust contrast injection-independent organ segmentation.
    Lartaud PJ; Dupont C; Hallé D; Schleef A; Dessouky R; Vlachomitrou AS; Rouet JM; Nempont O; Boussel L
    Med Phys; 2022 Feb; 49(2):1108-1122. PubMed ID: 34689353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A deep learning method for eliminating head motion artifacts in computed tomography.
    Su B; Wen Y; Liu Y; Liao S; Fu J; Quan G; Li Z
    Med Phys; 2022 Jan; 49(1):411-419. PubMed ID: 34786714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Image domain dual material decomposition for dual-energy CT using butterfly network.
    Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B
    Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reducing windmill artifacts in clinical spiral CT using a deep learning-based projection raw data upsampling: Method and robustness evaluation.
    Magonov J; Maier J; Erath J; Sunnegårdh J; Fournié E; Stierstorfer K; Kachelrieß M
    Med Phys; 2024 Mar; 51(3):1597-1616. PubMed ID: 38227833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A CNN-based denoising method trained with images acquired with electron density phantoms for thin-sliced coronary artery calcium scans.
    Yang CC; Hou KY
    J Appl Clin Med Phys; 2024 Mar; 25(3):e14287. PubMed ID: 38346094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local noise estimation in low-dose chest CT images.
    Padgett J; Biancardi AM; Henschke CI; Yankelevitz D; Reeves AP
    Int J Comput Assist Radiol Surg; 2014 Mar; 9(2):221-9. PubMed ID: 23877281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Native-resolution myocardial principal Eulerian strain mapping using convolutional neural networks and Tagged Magnetic Resonance Imaging.
    Yassine IA; Ghanem AM; Metwalli NS; Hamimi A; Ouwerkerk R; Matta JR; Solomon MA; Elinoff JM; Gharib AM; Abd-Elmoniem KZ
    Comput Biol Med; 2022 Feb; 141():105041. PubMed ID: 34836627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An automated technique for global noise level measurement in CT image with a conjunction of image gradient.
    Kuo HC; Mahmood U; Kirov AS; Mechalakos J; Della Biancia C; Cerviño LI; Lim SB
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38537310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep-learning-based projection-domain breast thickness estimation for shape-prior iterative image reconstruction in digital breast tomosynthesis.
    Lee S; Kim H; Lee H; Cho S
    Med Phys; 2022 Jun; 49(6):3670-3682. PubMed ID: 35297075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of image noise contributions in proton computed tomography and comparison to measurements.
    Dickmann J; Wesp P; Rädler M; Rit S; Pankuch M; Johnson RP; Bashkirov V; Schulte RW; Parodi K; Landry G; Dedes G
    Phys Med Biol; 2019 Jul; 64(14):145016. PubMed ID: 31125986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.