These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37380154)

  • 1. Oligodendrocyte Transcription Factor 2 as a Potential Prognostic Biomarker of Glioblastoma: Kaplan-Meier Analysis and the Development of a Binary Predictive Model Based on Visually Accessible Rembrandt Image and Magnetic Resonance Imaging Radiomic Features.
    Mei N; Lu Y; Yang S; Jiang S; Ruan Z; Wang D; Liu X; Ying Y; Li X; Yin B
    J Comput Assist Tomogr; 2023 Jul-Aug 01; 47(4):650-658. PubMed ID: 37380154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma.
    Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V
    Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of heterogeneity of peritumoral T2 hyperintensity in patients with pretreatment glioblastoma: Prognostic value of MRI-based radiomics.
    Choi Y; Ahn KJ; Nam Y; Jang J; Shin NY; Choi HS; Jung SL; Kim BS
    Eur J Radiol; 2019 Nov; 120():108642. PubMed ID: 31546124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRI Features May Predict Molecular Features of Glioblastoma in
    Park CJ; Han K; Kim H; Ahn SS; Choi D; Park YW; Chang JH; Kim SH; Cha S; Lee SK
    AJNR Am J Neuroradiol; 2021 Mar; 42(3):448-456. PubMed ID: 33509914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Contrast-Enhanced T1-Weighted Perfusion Magnetic Resonance Imaging Identifies Glioblastoma Immunohistochemical Biomarkers via Tumoral and Peritumoral Approach: A Pilot Study.
    Ozturk K; Soylu E; Tolunay S; Narter S; Hakyemez B
    World Neurosurg; 2019 Aug; 128():e195-e208. PubMed ID: 31003026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparative and Summative Study of Radiomics-based Overall Survival Prediction in Glioblastoma Patients.
    Ruan Z; Mei N; Lu Y; Xiong J; Li X; Zheng W; Liu L; Yin B
    J Comput Assist Tomogr; 2022 May-Jun 01; 46(3):470-479. PubMed ID: 35405713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological underpinnings of radiomic magnetic resonance imaging phenotypes for risk stratification in IDH wild-type glioblastoma.
    Guan F; Wang Z; Qiu Y; Guo Y; Pei D; Wang M; Xing A; Liu Z; Yu B; Cheng J; Liu X; Ji Y; Yan D; Yan J; Zhang Z
    J Transl Med; 2023 Nov; 21(1):841. PubMed ID: 37993907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semantic imaging features predict disease progression and survival in glioblastoma multiforme patients.
    Peeken JC; Hesse J; Haller B; Kessel KA; Nüsslin F; Combs SE
    Strahlenther Onkol; 2018 Jun; 194(6):580-590. PubMed ID: 29442128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiomic Analysis Reveals Prognostic Information in T1-Weighted Baseline Magnetic Resonance Imaging in Patients With Glioblastoma.
    Ingrisch M; Schneider MJ; Nörenberg D; Negrao de Figueiredo G; Maier-Hein K; Suchorska B; Schüller U; Albert N; Brückmann H; Reiser M; Tonn JC; Ertl-Wagner B
    Invest Radiol; 2017 Jun; 52(6):360-366. PubMed ID: 28079702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OLIG2 expression level could be used as an independent prognostic factor for patients with cerebellar Glioblastoma (cGBM).
    Zhou J; Shi LF; Wang Z; Li M; Zhang JS; Mao Y; Hua W
    Clinics (Sao Paulo); 2023; 78():100120. PubMed ID: 37001387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning-based radiomic evaluation of treatment response prediction in glioblastoma.
    Patel M; Zhan J; Natarajan K; Flintham R; Davies N; Sanghera P; Grist J; Duddalwar V; Peet A; Sawlani V
    Clin Radiol; 2021 Aug; 76(8):628.e17-628.e27. PubMed ID: 33941364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging.
    Li Y; Liang Y; Sun Z; Xu K; Fan X; Li S; Zhang Z; Jiang T; Liu X; Wang Y
    Neuroradiology; 2019 Nov; 61(11):1229-1237. PubMed ID: 31218383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients.
    Chaddad A; Sabri S; Niazi T; Abdulkarim B
    Med Biol Eng Comput; 2018 Dec; 56(12):2287-2300. PubMed ID: 29915951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models.
    Kickingereder P; Burth S; Wick A; Götz M; Eidel O; Schlemmer HP; Maier-Hein KH; Wick W; Bendszus M; Radbruch A; Bonekamp D
    Radiology; 2016 Sep; 280(3):880-9. PubMed ID: 27326665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme.
    Peeken JC; Goldberg T; Pyka T; Bernhofer M; Wiestler B; Kessel KA; Tafti PD; Nüsslin F; Braun AE; Zimmer C; Rost B; Combs SE
    Cancer Med; 2019 Jan; 8(1):128-136. PubMed ID: 30561851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.
    Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiogenomics to characterize the immune-related prognostic signature associated with biological functions in glioblastoma.
    Liu D; Chen J; Ge H; Yan Z; Luo B; Hu X; Yang K; Liu Y; Liu H; Zhang W
    Eur Radiol; 2023 Jan; 33(1):209-220. PubMed ID: 35881182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion tensor imaging-based machine learning for IDH wild-type glioblastoma stratification to reveal the biological underpinning of radiomic features.
    Wang Z; Guan F; Duan W; Guo Y; Pei D; Qiu Y; Wang M; Xing A; Liu Z; Yu B; Zheng H; Liu X; Yan D; Ji Y; Cheng J; Yan J; Zhang Z
    CNS Neurosci Ther; 2023 Nov; 29(11):3339-3350. PubMed ID: 37222229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction.
    Bae S; Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Radiology; 2018 Dec; 289(3):797-806. PubMed ID: 30277442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation.
    Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS
    Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.