BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37380345)

  • 1. Bacterial genome reduction for optimal chassis of synthetic biology: a review.
    Ma S; Su T; Lu X; Qi Q
    Crit Rev Biotechnol; 2024 Jun; 44(4):660-673. PubMed ID: 37380345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a minimal genome as a chassis for synthetic biology.
    Sung BH; Choe D; Kim SC; Cho BK
    Essays Biochem; 2016 Nov; 60(4):337-346. PubMed ID: 27903821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches.
    Bu QT; Yu P; Wang J; Li ZY; Chen XA; Mao XM; Li YQ
    Microb Cell Fact; 2019 Jan; 18(1):16. PubMed ID: 30691531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Progress and perspective on development of non-model industrial bacteria as chassis cells for biochemical production in the synthetic biology era].
    Yang Y; Geng B; Song H; Hu M; He Q; Chen S; Bai F; Yang S
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):874-910. PubMed ID: 33783156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms.
    Calero P; Nikel PI
    Microb Biotechnol; 2019 Jan; 12(1):98-124. PubMed ID: 29926529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of metabolic stress on genome stability of a synthetic biology chassis Escherichia coli K12 strain.
    Couto JM; McGarrity A; Russell J; Sloan WT
    Microb Cell Fact; 2018 Jan; 17(1):8. PubMed ID: 29357936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of genomic islands in the Pseudomonas putida KT2440 genome can create an optimal chassis for synthetic biology applications.
    Liang P; Zhang Y; Xu B; Zhao Y; Liu X; Gao W; Ma T; Yang C; Wang S; Liu R
    Microb Cell Fact; 2020 Mar; 19(1):70. PubMed ID: 32188438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research progress of bacterial minimal genome.
    Jinyu L; Shan Y; Yujun C; Tao W; Yue T
    Yi Chuan; 2021 Feb; 43(2):142-159. PubMed ID: 33724217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corynebacterium glutamicum Chassis C1*: Building and Testing a Novel Platform Host for Synthetic Biology and Industrial Biotechnology.
    Baumgart M; Unthan S; Kloß R; Radek A; Polen T; Tenhaef N; Müller MF; Küberl A; Siebert D; Brühl N; Marin K; Hans S; Krämer R; Bott M; Kalinowski J; Wiechert W; Seibold G; Frunzke J; Rückert C; Wendisch VF; Noack S
    ACS Synth Biol; 2018 Jan; 7(1):132-144. PubMed ID: 28803482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial cell factories based on filamentous bacteria, yeasts, and fungi.
    Ding Q; Ye C
    Microb Cell Fact; 2023 Jan; 22(1):20. PubMed ID: 36717860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis.
    Liu Y; Liu L; Li J; Du G; Chen J
    Trends Biotechnol; 2019 May; 37(5):548-562. PubMed ID: 30446263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streamlined
    Wynands B; Otto M; Runge N; Preckel S; Polen T; Blank LM; Wierckx N
    ACS Synth Biol; 2019 Sep; 8(9):2036-2050. PubMed ID: 31465206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites.
    Shen X; Wang Z; Huang X; Hu H; Wang W; Zhang X
    BMC Genomics; 2017 Sep; 18(1):715. PubMed ID: 28893188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Biology to Construct Microbial Chassis for the Production of Difficult-to-Express Proteins.
    Kim K; Choe D; Lee DH; Cho BK
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in genome annotation and synthetic biology for the development of microbial chassis.
    Hamese S; Mugwanda K; Takundwa M; Prinsloo E; Thimiri Govinda Raj DB
    J Genet Eng Biotechnol; 2023 Dec; 21(1):156. PubMed ID: 38038785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to make a minimal genome for synthetic minimal cell.
    Zhang LY; Chang SH; Wang J
    Protein Cell; 2010 May; 1(5):427-34. PubMed ID: 21203957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streamlining genomes: toward the generation of simplified and stabilized microbial systems.
    Leprince A; van Passel MW; dos Santos VA
    Curr Opin Biotechnol; 2012 Oct; 23(5):651-8. PubMed ID: 22651991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communities of Niche-Optimized Strains: Small-Genome Organism Consortia in Bioproduction.
    Noack S; Baumgart M
    Trends Biotechnol; 2019 Feb; 37(2):126-139. PubMed ID: 30115374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of the Bacterial Genome by Transposon-Mediated Random Deletion.
    Ma S; Su T; Liu J; Lu X; Qi Q
    ACS Synth Biol; 2022 Feb; 11(2):668-677. PubMed ID: 35104106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random genome reduction coupled with polyhydroxybutyrate biosynthesis to facilitate its accumulation in
    Ma S; Su T; Liu J; Wang Q; Liang Q; Lu X; Qi Q
    Front Bioeng Biotechnol; 2022; 10():978211. PubMed ID: 36105609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.