BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37380484)

  • 1. Biomolecular Adsorption to Interfacial Single Particle Layer of Organo-Modified Nanodiamond and Its Second-Order Structure.
    Xu K; Yamada Y; Mashiyama Y; Fujimori A
    J Oleo Sci; 2023; 72(7):681-691. PubMed ID: 37380484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of modifying molecular chains in the formation of organized molecular films of organo-modified nanodiamond: construction of a highly ordered low defect particle layer and evaluation of desorption behavior of organic chains.
    Fujimori A; Kasahara Y; Honda N; Akasaka S
    Langmuir; 2015 Mar; 31(9):2895-904. PubMed ID: 25692757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependency of Nanodiamond Particle Size and Outermost-Surface Composition on Organo-Modification: Evaluation by Formation of Organized Molecular Films and Nanohybridization with Organic Polymers.
    Tasaki T; Guo Y; Meng Q; Mamun MAA; Kasahara Y; Akasaka S; Fujimori A
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14379-14390. PubMed ID: 28395137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Division of roles of modified chains in organo-magnetic nanoparticles using Organo-modified agents having hydrophilic reactive polar groups at both ends: Formation of high-density single-particle layers and bioconjugation.
    Yunoki T; Kimura Y; Fujimori A
    Colloids Surf B Biointerfaces; 2019 Jan; 173():759-768. PubMed ID: 30384273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release.
    Giammarco J; Mochalin VN; Haeckel J; Gogotsi Y
    J Colloid Interface Sci; 2016 Apr; 468():253-261. PubMed ID: 26852349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of Trypsin from the Subphase to the Langmuir Monolayer of Fluorocarbon-Modified Single-Walled Carbon Nanotube and Its Activity Maintenance.
    Yamada Y; Obuchi K; Kikuchi N; Almarasy AA; Fujimori A
    Langmuir; 2022 May; 38(18):5692-5701. PubMed ID: 35465664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tritium labelling to study humic substance-nanodiamond composites.
    Abmetko IV; Chernysheva MG; Kulikova NA; Konstantinov AI; Popov AG; Badun GA; Perminova IV
    Environ Res; 2021 Feb; 193():110396. PubMed ID: 33157107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of drugs on nanodiamond: toward development of a drug delivery platform.
    Mochalin VN; Pentecost A; Li XM; Neitzel I; Nelson M; Wei C; He T; Guo F; Gogotsi Y
    Mol Pharm; 2013 Oct; 10(10):3728-35. PubMed ID: 23941665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications.
    Perevedentseva E; Cai PJ; Chiu YC; Cheng CL
    Langmuir; 2011 Feb; 27(3):1085-91. PubMed ID: 21192695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient removal of heavy metal ions from aqueous media by unmodified and modified nanodiamonds.
    Ahmadijokani F; Molavi H; Peyghambari A; Shojaei A; Rezakazemi M; Aminabhavi TM; Arjmand M
    J Environ Manage; 2022 Aug; 316():115214. PubMed ID: 35594821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds.
    Lai L; Barnard AS
    Nanoscale; 2011 Jun; 3(6):2566-75. PubMed ID: 21818865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extension of "Interfacial Adsorption Denaturation" Behavior Interpretation Based on Gibbs Monolayer Formation by Biomolecules.
    Kimura Y; Mashiyama Y; Maruyama H; Fujimori A
    J Oleo Sci; 2021; 70(3):349-362. PubMed ID: 33658466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface charge effects in protein adsorption on nanodiamonds.
    Aramesh M; Shimoni O; Ostrikov K; Prawer S; Cervenka J
    Nanoscale; 2015 Mar; 7(13):5726-36. PubMed ID: 25743890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-Mouth Structure of Highly Agglomerated Detonation Nanodiamonds.
    Piña-Salazar EZ; Sagisaka K; Hayashi T; Hattori Y; Sakai T; Ōsawa E; Kaneko K
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Adsorption Property of Hierarchically Nanoporous Detonation Nanodiamonds.
    Pina-Salazar EZ; Urita K; Hayashi T; Futamura R; Vallejos-Burgos F; Włoch J; Kowalczyk P; Wiśniewski M; Sakai T; Moriguchi I; Terzyk AP; Osawa E; Kaneko K
    Langmuir; 2017 Oct; 33(42):11180-11188. PubMed ID: 28793776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of cytochrome c with monolayers of phosphatidylethanolamine.
    Quinn PJ; Dawson RM
    Biochem J; 1969 Aug; 113(5):791-803. PubMed ID: 5821009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperpolarized Nanodiamond Surfaces.
    Rej E; Gaebel T; Waddington DE; Reilly DJ
    J Am Chem Soc; 2017 Jan; 139(1):193-199. PubMed ID: 28009158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolayer-protected nanoparticle film assemblies as platforms for controlling interfacial and adsorption properties in protein monolayer electrochemistry.
    Loftus AF; Reighard KP; Kapourales SA; Leopold MC
    J Am Chem Soc; 2008 Feb; 130(5):1649-61. PubMed ID: 18189391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Nanodiamond Surface Chemistry on Adsorption and Release of Tiopronin.
    Beltz J; Pfaff A; Abdullahi IM; Cristea A; Mochalin VN; Ercal N
    Diam Relat Mater; 2019 Dec; 100():. PubMed ID: 31814658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application.
    Gonçalves JPL; Shaikh AQ; Reitzig M; Kovalenko DA; Michael J; Beutner R; Cuniberti G; Scharnweber D; Opitz J
    Beilstein J Org Chem; 2014; 10():2765-2773. PubMed ID: 25550742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.