These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37380677)
1. How genetically modified mosquitoes could eradicate malaria. Jones S Nature; 2023 Jun; 618(7967):S29-S31. PubMed ID: 37380677 [No Abstract] [Full Text] [Related]
2. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility. North AR; Burt A; Godfray HCJ BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000 [TBL] [Abstract][Full Text] [Related]
4. Symbionts and gene drive: two strategies to combat vector-borne disease. Wang GH; Du J; Chu CY; Madhav M; Hughes GL; Champer J Trends Genet; 2022 Jul; 38(7):708-723. PubMed ID: 35314082 [TBL] [Abstract][Full Text] [Related]
5. Transforming malaria prevention and control: the prospects and challenges of gene drive technology for mosquito management. Tajudeen YA; Oladipo HJ; Oladunjoye IO; Oladipo MK; Shittu HD; Abdulmumeen IF; Afolabi AO; El-Sherbini MS Ann Med; 2023; 55(2):2302504. PubMed ID: 38232762 [No Abstract] [Full Text] [Related]
6. Controversial CRISPR 'gene drives' tested in mammals for the first time. Callaway E Nature; 2018 Jul; 559(7713):164. PubMed ID: 29991786 [No Abstract] [Full Text] [Related]
7. Assessing CRISPR/Cas9 potential in SDG3 attainment: malaria elimination-regulatory and community engagement landscape. Snuzik A Malar J; 2024 Jun; 23(1):192. PubMed ID: 38898518 [TBL] [Abstract][Full Text] [Related]
8. An Introduction to Containment Recommendations for Gene Drive Mosquitoes and the Laboratory Rearing of Genetically Engineered Mosquitoes in Africa. Higgs S Vector Borne Zoonotic Dis; 2022 Jan; 22(1):1-2. PubMed ID: 34995158 [No Abstract] [Full Text] [Related]
9. An Ethical Overview of the CRISPR-Based Elimination of Anopheles gambiae to Combat Malaria. Wise IJ; Borry P J Bioeth Inq; 2022 Sep; 19(3):371-380. PubMed ID: 35175513 [TBL] [Abstract][Full Text] [Related]
10. Gene-drive mosquitoes: a prospect for future malaria control. Monawwer SA; Alzubaidi AOI; Yasmin F; Haimour SMQ; Shah SMI; Ullah I Pan Afr Med J; 2022; 41():109. PubMed ID: 35432707 [TBL] [Abstract][Full Text] [Related]
11. Control of malaria-transmitting mosquitoes using gene drives. Nolan T Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190803. PubMed ID: 33357060 [TBL] [Abstract][Full Text] [Related]
12. Predicting the spread and persistence of genetically modified dominant sterile male mosquitoes. Ickowicz A; Foster SD; Hosack GR; Hayes KR Parasit Vectors; 2021 Sep; 14(1):480. PubMed ID: 34530904 [TBL] [Abstract][Full Text] [Related]
13. Ugandan stakeholder hopes and concerns about gene drive mosquitoes for malaria control: new directions for gene drive risk governance. Hartley S; Smith RDJ; Kokotovich A; Opesen C; Habtewold T; Ledingham K; Raymond B; Rwabukwali CB Malar J; 2021 Mar; 20(1):149. PubMed ID: 33726763 [TBL] [Abstract][Full Text] [Related]
14. Malaria-Resistant Mosquitoes (Diptera: Culicidae); The Principle is Proven, But Will the Effectors Be Effective? Adelman ZN; Kojin BB J Med Entomol; 2021 Sep; 58(5):1997-2005. PubMed ID: 34018548 [TBL] [Abstract][Full Text] [Related]
15. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria. Qureshi A; Connolly JB Malar J; 2023 Aug; 22(1):234. PubMed ID: 37580703 [TBL] [Abstract][Full Text] [Related]
16. Informed consent and community engagement in open field research: lessons for gene drive science. Singh JA BMC Med Ethics; 2019 Jul; 20(1):54. PubMed ID: 31351474 [TBL] [Abstract][Full Text] [Related]
17. Next-generation gene drive for population modification of the malaria vector mosquito, Carballar-LejarazĂș R; Ogaugwu C; Tushar T; Kelsey A; Pham TB; Murphy J; Schmidt H; Lee Y; Lanzaro GC; James AA Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22805-22814. PubMed ID: 32839345 [TBL] [Abstract][Full Text] [Related]
18. Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant Aedes aegypti (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field. Reid WR; Olson KE; Franz AWE J Med Entomol; 2021 Sep; 58(5):1987-1996. PubMed ID: 33704462 [TBL] [Abstract][Full Text] [Related]
19. Making gene drive biodegradable. Zapletal J; Najmitabrizi N; Erraguntla M; Lawley MA; Myles KM; Adelman ZN Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190804. PubMed ID: 33357058 [TBL] [Abstract][Full Text] [Related]
20. CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector. Nourani L; Mehrizi AA; Pirahmadi S; Pourhashem Z; Asadollahi E; Jahangiri B Infect Genet Evol; 2023 Apr; 109():105419. PubMed ID: 36842543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]