These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 37381095)
1. Cancer Immunotherapy Based on Cell Membrane-Coated Nanocomposites Augmenting cGAS/STING Activation by Efferocytosis Blockade. Chen Z; Li Z; Huang H; Shen G; Ren Y; Mao X; Wang L; Li Z; Wang W; Li G; Zhao B; Guo W; Hu Y Small; 2023 Oct; 19(43):e2302758. PubMed ID: 37381095 [TBL] [Abstract][Full Text] [Related]
2. Strategies involving STING pathway activation for cancer immunotherapy: Mechanism and agonists. Pan X; Zhang W; Guo H; Wang L; Wu H; Ding L; Yang B Biochem Pharmacol; 2023 Jul; 213():115596. PubMed ID: 37201875 [TBL] [Abstract][Full Text] [Related]
3. A General Biomineralization Strategy to Synthesize Autologous Cancer Vaccines with cGAS-STING Activating Capacity for Postsurgical Immunotherapy. Li Q; Dong Z; Cao Z; Lei H; Wang C; Hao Y; Feng L; Liu Z ACS Nano; 2023 Jun; 17(11):10496-10510. PubMed ID: 37184402 [TBL] [Abstract][Full Text] [Related]
4. Engineering and Delivery of cGAS-STING Immunomodulators for the Immunotherapy of Cancer and Autoimmune Diseases. Zhou S; Cheng F; Zhang Y; Su T; Zhu G Acc Chem Res; 2023 Nov; 56(21):2933-2943. PubMed ID: 37802125 [TBL] [Abstract][Full Text] [Related]
5. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Lv M; Chen M; Zhang R; Zhang W; Wang C; Zhang Y; Wei X; Guan Y; Liu J; Feng K; Jing M; Wang X; Liu YC; Mei Q; Han W; Jiang Z Cell Res; 2020 Nov; 30(11):966-979. PubMed ID: 32839553 [TBL] [Abstract][Full Text] [Related]
6. Tumor-derived nanovesicles enhance cancer synergistic chemo-immunotherapy by promoting cGAS/STING pathway activation and immunogenetic cell death. Guo Y; Qian R; Li Z; Lv T; Yang C; Li W; Pan T; Hou X; Wang Z Life Sci; 2024 Jul; 348():122687. PubMed ID: 38718856 [TBL] [Abstract][Full Text] [Related]
7. Differential reinforcement of cGAS-STING pathway-involved immunotherapy by biomineralized bacterial outer membrane-sensitized EBRT and RNT. Shen M; Guo L; Zhang H; Zheng B; Liu X; Gu J; Yang T; Sun C; Yi X J Nanobiotechnology; 2024 Jun; 22(1):310. PubMed ID: 38831378 [TBL] [Abstract][Full Text] [Related]
8. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. Li A; Yi M; Qin S; Song Y; Chu Q; Wu K J Hematol Oncol; 2019 Apr; 12(1):35. PubMed ID: 30935414 [TBL] [Abstract][Full Text] [Related]
9. cGAS/STING cross-talks with cell cycle and potentiates cancer immunotherapy. Long ZJ; Wang JD; Xu JQ; Lei XX; Liu Q Mol Ther; 2022 Mar; 30(3):1006-1017. PubMed ID: 35121107 [TBL] [Abstract][Full Text] [Related]
10. Metal coordination nanotheranostics mediated by nucleoside metabolic inhibitors potentiate STING pathway activation for cancer metalloimmunotherapy. Yang L; Wang Y; Song Y; Li Z; Lei L; Li H; He B; Cao J; Gao H J Control Release; 2024 Jun; 370():354-366. PubMed ID: 38685387 [TBL] [Abstract][Full Text] [Related]
11. Radiation Therapy Promotes Hepatocellular Carcinoma Immune Cloaking via PD-L1 Upregulation Induced by cGAS-STING Activation. Du SS; Chen GW; Yang P; Chen YX; Hu Y; Zhao QQ; Zhang Y; Liu R; Zheng DX; Zhou J; Fan J; Zeng ZC Int J Radiat Oncol Biol Phys; 2022 Apr; 112(5):1243-1255. PubMed ID: 34986380 [TBL] [Abstract][Full Text] [Related]
12. Hypoxia Reversion and STING Pathway Activation through Large Mesoporous Nanozyme for Near-Infrared-II Light Amplified Tumor Polymetallic-Immunotherapy. Qu C; Shao X; Jia R; Song G; Shi D; Wang H; Wang J; An H ACS Nano; 2024 Aug; 18(33):22153-22171. PubMed ID: 39118372 [TBL] [Abstract][Full Text] [Related]
13. Biodegradable Long-Circulating Nanoagonists Optimize Tumor-Tropism Chemo-Metalloimmunotherapy for Boosted Antitumor Immunity by Cascade cGAS-STING Pathway Activation. Li H; Zhang C; Chen Y; Xu Y; Yao W; Fan W ACS Nano; 2024 Aug; 18(34):23711-23726. PubMed ID: 39148423 [TBL] [Abstract][Full Text] [Related]
14. Biosynthetic MnSe nanobomb with low Mn content activates the cGAS-STING pathway and induces immunogenic cell death to enhance antitumour immunity. Gao W; Wang Y; Wang P; Kan W; Wang M; Li H; Wang X; Yuan P; Ma Y; Zhang J; Tian G; Zhang G Acta Biomater; 2024 Aug; 184():383-396. PubMed ID: 38936753 [TBL] [Abstract][Full Text] [Related]
15. cGAS-STING and Cancer: Dichotomous Roles in Tumor Immunity and Development. Ng KW; Marshall EA; Bell JC; Lam WL Trends Immunol; 2018 Jan; 39(1):44-54. PubMed ID: 28830732 [TBL] [Abstract][Full Text] [Related]
16. Epigenetic regulation of cGAS and STING expression in cancer. Zhao C; Guo S; Ge S Int Immunopharmacol; 2024 Sep; 138():112556. PubMed ID: 38936059 [TBL] [Abstract][Full Text] [Related]
17. Specific activation of cGAS-STING pathway by nanotherapeutics-mediated ferroptosis evoked endogenous signaling for boosting systemic tumor immunotherapy. Liang JL; Jin XK; Zhang SM; Huang QX; Ji P; Deng XC; Cheng SX; Chen WH; Zhang XZ Sci Bull (Beijing); 2023 Mar; 68(6):622-636. PubMed ID: 36914548 [TBL] [Abstract][Full Text] [Related]
18. Pharmacological Activation of cGAS for Cancer Immunotherapy. Garland KM; Rosch JC; Carson CS; Wang-Bishop L; Hanna A; Sevimli S; Van Kaer C; Balko JM; Ascano M; Wilson JT Front Immunol; 2021; 12():753472. PubMed ID: 34899704 [TBL] [Abstract][Full Text] [Related]
19. Activating cGAS-STING pathway with ROS-responsive nanoparticles delivering a hybrid prodrug for enhanced chemo-immunotherapy. Cao L; Tian H; Fang M; Xu Z; Tang D; Chen J; Yin J; Xiao H; Shang K; Han H; Li X Biomaterials; 2022 Nov; 290():121856. PubMed ID: 36306685 [TBL] [Abstract][Full Text] [Related]
20. Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies. Huang M; Cha Z; Liu R; Lin M; Gafoor NA; Kong T; Ge F; Chen W Front Immunol; 2024; 15():1399926. PubMed ID: 38817608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]