These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37381237)

  • 1. Optical cascaded reservoir computing for realization of dual-channel high-speed OTDM chaotic secure communication via four optically pumped VCSEL.
    Zhong D; Zhang J; Deng W; Hou P; Wu Q; Chen Y; Wang T; Hu Y; Deng F
    Opt Express; 2023 Jun; 31(13):21367-21388. PubMed ID: 37381237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep optical reservoir computing and chaotic synchronization predictions based on the cascade coupled optically pumped spin-VCSELs.
    Zhong D; Zhao K; Xu Z; Hu Y; Deng W; Hou P; Zhang J; Zhang J
    Opt Express; 2022 Sep; 30(20):36209-36233. PubMed ID: 36258555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate separation of mixed high-dimension optical-chaotic signals using optical reservoir computing based on optically pumped VCSELs.
    Zhong D; Hu Y; Zhao K; Deng W; Hou P; Zhang J
    Opt Express; 2022 Oct; 30(22):39561-39581. PubMed ID: 36298905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secure Communication via Chaotic Synchronization Based on Reservoir Computing.
    Liu J; Zhang J; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; 35(1):285-299. PubMed ID: 35653446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise ranging for the multi-region by using multi-beam chaotic polarization components in the multiple parallel optically pumped spin-VCSELs with optical injection.
    Zhong D; Zeng N; Yang H; Xu Z; Hu Y; Zhao K
    Opt Express; 2021 Mar; 29(5):7809-7824. PubMed ID: 33726275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive learning of multi-channel isochronal chaotic synchronization by utilizing parallel optical reservoir computers based on three laterally coupled semiconductor lasers with delay-time feedback.
    Zhong D; Yang H; Xi J; Zeng N; Xu Z; Deng F
    Opt Express; 2021 Feb; 29(4):5279-5294. PubMed ID: 33726067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secure communication systems based on chaos in optically pumped spin-VCSELs.
    Li N; Susanto H; Cemlyn B; Henning ID; Adams MJ
    Opt Lett; 2017 Sep; 42(17):3494-3497. PubMed ID: 28957071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excellent predictive-performances of photonic reservoir computers for chaotic time-series using the fusion-prediction approach.
    Zhong D; Hou P; Zhang J; Deng W; Wang T; Chen Y; Wu Q
    Opt Express; 2023 Jul; 31(15):24453-24468. PubMed ID: 37475272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaos-based communications at high bit rates using commercial fibre-optic links.
    Argyris A; Syvridis D; Larger L; Annovazzi-Lodi V; Colet P; Fischer I; García-Ojalvo J; Mirasso CR; Pesquera L; Shore KA
    Nature; 2005 Nov; 438(7066):343-6. PubMed ID: 16292256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection.
    Liu J; Wu ZM; Xia GQ
    Opt Express; 2009 Jul; 17(15):12619-26. PubMed ID: 19654666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scheme of coherent optical chaos communication.
    Wang L; Mao X; Wang A; Wang Y; Gao Z; Li S; Yan L
    Opt Lett; 2020 Sep; 45(17):4762-4765. PubMed ID: 32870851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical secure key distribution based on chaotic self-carrier phase modulation and time-delayed shift keying of synchronized optical chaos.
    Gao Z; Ma Z; Wu S; Gao H; Wang A; Fu S; Li Z; Qin Y; Wang Y
    Opt Express; 2022 Jun; 30(13):23953-23966. PubMed ID: 36225066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical secure optical communication based on private chaotic spectral phase encryption/decryption.
    Jiang N; Zhao A; Xue C; Tang J; Qiu K
    Opt Lett; 2019 Apr; 44(7):1536-1539. PubMed ID: 30933084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-haul dense wavelength division multiplexing between a chaotic optical secure channel and a conventional fiber-optic channel.
    Zhao Q; Yin H; Chen X
    Appl Opt; 2012 Aug; 51(22):5585-90. PubMed ID: 22859052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed secure key distribution based on chaos synchronization in optically pumped QD spin-polarized VCSELs.
    Huang Y; Zhou P; Li N
    Opt Express; 2021 Jun; 29(13):19675-19689. PubMed ID: 34266073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Security mesh-based optical network exploiting the double masking scheme.
    Feng M; Xie Y; Dai L; Liu B; Jiang X; Chai J; Tang Q; Yang R; Yuan H
    Opt Express; 2022 Nov; 30(24):43826-43841. PubMed ID: 36523073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of synchronized wideband complex signals and its application in secure optical communication.
    Zhao A; Jiang N; Liu S; Zhang Y; Qiu K
    Opt Express; 2020 Aug; 28(16):23363-23373. PubMed ID: 32752334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaotic wavelength division multiplexing for optical communication.
    Matsuura T; Uchida A; Yoshimori S
    Opt Lett; 2004 Dec; 29(23):2731-3. PubMed ID: 15605487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 32  Gb/s chaotic optical communications by deep-learning-based chaos synchronization.
    Ke J; Yi L; Yang Z; Yang Y; Zhuge Q; Chen Y; Hu W
    Opt Lett; 2019 Dec; 44(23):5776-5779. PubMed ID: 31774777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trading off security and practicability to explore high-speed and long-haul chaotic optical communication.
    Jiang L; Pan Y; Yi A; Feng J; Pan W; Yi L; Hu W; Wang A; Wang Y; Qin Y; Yan L
    Opt Express; 2021 Apr; 29(8):12750-12762. PubMed ID: 33985025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.