BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37381384)

  • 1. Sub-terahertz scanning near-field optical microscope using a quartz tuning fork based probe.
    Li X; Sun J; Jin L; Shangguan Y; Chen K; Qin H
    Opt Express; 2023 Jun; 31(12):19754-19765. PubMed ID: 37381384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz Nanofocusing with Cantilevered Terahertz-Resonant Antenna Tips.
    Mastel S; Lundeberg MB; Alonso-González P; Gao Y; Watanabe K; Taniguchi T; Hone J; Koppens FHL; Nikitin AY; Hillenbrand R
    Nano Lett; 2017 Nov; 17(11):6526-6533. PubMed ID: 29035061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser THz emission nanoscopy and THz nanoscopy.
    Pizzuto A; Mittleman DM; Klarskov P
    Opt Express; 2020 Jun; 28(13):18778-18789. PubMed ID: 32672171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apertureless near-field scanning optical microscope working with or without laser source.
    Formanek F; De Wilde Y; Aigouy L; Chen Y
    Scanning; 2004; 26(5 Suppl 1):I63-7. PubMed ID: 15540816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a short-tip tapping-mode tuning fork near-field scanning optical microscope.
    Lu NH; Huang CW; Chen CY; Yu CF; Kao TS; Fu YH; Tsai DP
    J Microsc; 2003 Mar; 209(Pt 3):205-8. PubMed ID: 12641763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically stable tuning fork sensor with high quality factor for the atomic force microscope.
    Kim K; Park JY; Kim KB; Lee N; Seo Y
    Scanning; 2014; 36(6):632-9. PubMed ID: 25229367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.
    de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE
    Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement and Control System for Atomic Force Microscope Based on Quartz Tuning Fork Self-Induction Probe.
    Luo Y; Ding X; Chen T; Su T; Chen D
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low terahertz-band scanning near-field microscope with 155-nm resolution.
    Dai G; Wang J; Zhang X; Chang T; Cui HL
    Ultramicroscopy; 2021 Jul; 226():113295. PubMed ID: 34000640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling scanning near-field optical photons scattered from an atomic force microscope for quantum metrology.
    Khajavi S; Shaterzadeh-Yazdi Z; Eghrari A; Neshat M
    Ultramicroscopy; 2024 Jan; 255():113863. PubMed ID: 37837794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-temperature and high magnetic field dynamic scanning capacitance microscope.
    Baumgartner A; Suddards ME; Mellor CJ
    Rev Sci Instrum; 2009 Jan; 80(1):013704. PubMed ID: 19191438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sensitive near-field microscope for thermal radiation.
    Kajihara Y; Kosaka K; Komiyama S
    Rev Sci Instrum; 2010 Mar; 81(3):033706. PubMed ID: 20370184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antenna-coupled field-effect transistors as detectors for terahertz near-field microscopy.
    Wiecha MM; Kapoor R; Chernyadiev AV; Ikamas K; Lisauskas A; Roskos HG
    Nanoscale Adv; 2021 Mar; 3(6):1717-1724. PubMed ID: 36132567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a cryogenic passive-scattering-type near-field optical microscopy system.
    Lin KT; Weng Q; Kim S; Komiyama S; Kajihara Y
    Rev Sci Instrum; 2023 Feb; 94(2):023701. PubMed ID: 36859006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical near-field harmonic demodulation in apertureless microscopy.
    Maghelli N; Labardi M; Patanè S; Irrera F; Allegrini M
    J Microsc; 2001 Apr; 202(Pt 1):84-93. PubMed ID: 11298875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution enhancement in a reflection mode near-field optical microscope by second-harmonic modulation signals.
    Park JH; Kim MR; Jhe W
    Opt Lett; 2000 May; 25(9):628-30. PubMed ID: 18064132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation and characterization of a quartz tuning fork based probe consisted of discrete resonators for dynamic mode atomic force microscopy.
    Akiyama T; de Rooij NF; Staufer U; Detterbeck M; Braendlin D; Waldmeier S; Scheidiger M
    Rev Sci Instrum; 2010 Jun; 81(6):063706. PubMed ID: 20590245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibration amplitude of a tip-loaded quartz tuning fork during shear force microscopy scanning.
    Sandoz P; Friedt JM; Carry E
    Rev Sci Instrum; 2008 Aug; 79(8):086102. PubMed ID: 19044383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic THz near-field microscope.
    von Ribbeck HG; Brehm M; van der Weide DW; Winnerl S; Drachenko O; Helm M; Keilmann F
    Opt Express; 2008 Mar; 16(5):3430-8. PubMed ID: 18542434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.