These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37381389)

  • 1. Pulsed stimulated Brillouin microscopy.
    Chow DM; Yun SH
    Opt Express; 2023 Jun; 31(12):19818-19827. PubMed ID: 37381389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens.
    Yang F; Bevilacqua C; Hambura S; Neves A; Gopalan A; Watanabe K; Govendir M; Bernabeu M; Ellenberg J; Diz-Muñoz A; Köhler S; Rapti G; Jechlinger M; Prevedel R
    Nat Methods; 2023 Dec; 20(12):1971-1979. PubMed ID: 37884795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic distributed optical fiber sensing based on simultaneous measurement of Brillouin gain and loss spectra with frequency-agile technique.
    Zhou D; Li P; Ba D; Hasi W; Dong Y
    Opt Lett; 2023 Jun; 48(12):3151-3154. PubMed ID: 37319049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear Brillouin spectroscopy: what makes it a better tool for biological viscoelastic measurements.
    Ballmann CW; Meng Z; Yakovlev VV
    Biomed Opt Express; 2019 Apr; 10(4):1750-1759. PubMed ID: 31086701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Noise Induced by Stimulated Brillouin Scattering in Distributed Sensing.
    Kadum JE; Feng C; Schneider T
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32748852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip stimulated Brillouin scattering.
    Pant R; Poulton CG; Choi DY; Mcfarlane H; Hile S; Li E; Thevenaz L; Luther-Davies B; Madden SJ; Eggleton BJ
    Opt Express; 2011 Apr; 19(9):8285-90. PubMed ID: 21643078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed Continuous-wave Stimulated Brillouin Scattering Spectrometer for Material Analysis.
    Remer I; Cohen L; Bilenca A
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers.
    David A; Horowitz M
    Opt Express; 2011 Jun; 19(12):11792-803. PubMed ID: 21716412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gain dependence of the linewidth of Brillouin amplification in optical fibers.
    Motil A; Hadar R; Sovran I; Tur M
    Opt Express; 2014 Nov; 22(22):27535-41. PubMed ID: 25401900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear microscopy using impulsive stimulated Brillouin scattering for high-speed elastography.
    Krug B; Koukourakis N; Guck J; Czarske J
    Opt Express; 2022 Feb; 30(4):4748-4758. PubMed ID: 35209449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigating the effects of the gain-dependence of the Brillouin line-shape on dynamic BOTDA sensing methods.
    Motil A; Davidi R; Hadar R; Tur M
    Opt Express; 2017 Sep; 25(19):22206-22218. PubMed ID: 29041535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-spectral-resolution stimulated Rayleigh-Brillouin scattering at 1 microm.
    Faris GW; Gerken M; Jirauschek C; Hogan D; Chen Y
    Opt Lett; 2001 Dec; 26(23):1894-6. PubMed ID: 18059729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel scanning method for distortion-free BOTDA measurements.
    Dominguez-Lopez A; Yang Z; Soto MA; Angulo-Vinuesa X; Martin-Lopez S; Thevenaz L; Gonzalez-Herraez M
    Opt Express; 2016 May; 24(10):10188-204. PubMed ID: 27409845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulated Brillouin Scattering Microscopic Imaging.
    Ballmann CW; Thompson JV; Traverso AJ; Meng Z; Scully MO; Yakovlev VV
    Sci Rep; 2015 Dec; 5():18139. PubMed ID: 26691398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Background-free Brillouin spectroscopy in scattering media at 780  nm via stimulated Brillouin scattering.
    Remer I; Bilenca A
    Opt Lett; 2016 Mar; 41(5):926-9. PubMed ID: 26974082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-contact and label-free biomechanical imaging: Stimulated Brillouin microscopy and beyond.
    Shi C; Zhang H; Zhang J
    Front Phys; 2023; 11():. PubMed ID: 37377499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Brillouin frequency shift profiles to compensate non-local effects and Brillouin induced noise in BOTDA sensors.
    Urricelqui J; Sagues M; Loayssa A
    Opt Express; 2014 Jul; 22(15):18195-202. PubMed ID: 25089438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contra-Intuitive Features of Time-Domain Brillouin Scattering in Collinear Paraxial Sound and Light Beams.
    Gusev VE
    Photoacoustics; 2020 Dec; 20():100205. PubMed ID: 33024693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide-range optical carrier recovery via broadened Brillouin filters.
    Zarifi A; Merklein M; Liu Y; Choudhary A; Eggleton BJ; Corcoran B
    Opt Lett; 2021 Jan; 46(2):166-169. PubMed ID: 33448979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique.
    Mizuno Y; Kishi M; Hotate K; Ishigure T; Nakamura K
    Opt Lett; 2011 Jun; 36(12):2378-80. PubMed ID: 21686026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.