These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37381432)

  • 61. Antisolvent Additive Engineering for Boosting Performance and Stability of Graded Heterojunction Perovskite Solar Cells Using Amide-Functionalized Graphene Quantum Dots.
    Khorshidi E; Rezaei B; Kavousighahfarokhi A; Hanisch J; Reus MA; Müller-Buschbaum P; Ameri T
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54623-54634. PubMed ID: 36446022
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor.
    Sun X; Li Z; Yu X; Wu X; Zhong C; Liu D; Lei D; Jen AK; Li Z; Zhu Z
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):7227-7233. PubMed ID: 33369830
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dual-Functional Additive to Simultaneously Modify the Interface and Grain Boundary for Highly Efficient and Hysteresis-Free Perovskite Solar Cells.
    Rao Y; Li Z; Liu D; Chen C; Wang X; Cui G; Pang S
    ACS Appl Mater Interfaces; 2021 May; 13(17):20043-20050. PubMed ID: 33896179
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hexylammonium Iodide Derived Two-Dimensional Perovskite as Interfacial Passivation Layer in Efficient Two-Dimensional/Three-Dimensional Perovskite Solar Cells.
    Lv Y; Song X; Yin Y; Feng Y; Ma H; Hao C; Jin S; Shi Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):698-705. PubMed ID: 31815408
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Up-Scalable Fabrication of SnO
    Tong G; Ono LK; Liu Y; Zhang H; Bu T; Qi Y
    Nanomicro Lett; 2021 Jul; 13(1):155. PubMed ID: 34244883
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identifying the functional groups effect on passivating perovskite solar cells.
    Xie J; Yan K; Zhu H; Li G; Wang H; Zhu H; Hang P; Zhao S; Guo W; Ye D; Shao L; Guan X; Ngai T; Yu X; Xu J
    Sci Bull (Beijing); 2020 Oct; 65(20):1726-1734. PubMed ID: 36659245
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High Efficiency and Stability of Inverted Perovskite Solar Cells Using Phenethyl Ammonium Iodide-Modified Interface of NiO
    Liu Y; Duan J; Zhang J; Huang S; Ou-Yang W; Bao Q; Sun Z; Chen X
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):771-779. PubMed ID: 31854975
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Chemical passivation of the under coordinated Pb
    Abdel-Shakour M; Chowdhury TH; Matsuishi K; Moritomo Y; Islam A
    Photochem Photobiol Sci; 2021 Mar; 20(3):357-367. PubMed ID: 33721271
    [TBL] [Abstract][Full Text] [Related]  

  • 69. High-efficiency planar heterojunction perovskite solar cell produced by using 4-morpholine ethane sulfonic acid sodium salt doped SnO
    Meng X; Deng J; Sun Q; Zong B; Zhang Z; Shen B; Kang B; Ravi P Silva S; Wang L
    J Colloid Interface Sci; 2022 Mar; 609():547-556. PubMed ID: 34815082
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells.
    Wang G; Wang L; Qiu J; Yan Z; Li C; Dai C; Zhen C; Tai K; Yu W; Jiang X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7690-7700. PubMed ID: 31961639
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer.
    Zhang J; Luo H; Xie W; Lin X; Hou X; Zhou J; Huang S; Ou-Yang W; Sun Z; Chen X
    Nanoscale; 2018 Mar; 10(12):5617-5625. PubMed ID: 29528068
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency.
    Li H; Zhou J; Tan L; Li M; Jiang C; Wang S; Zhao X; Liu Y; Zhang Y; Ye Y; Tress W; Yi C
    Sci Adv; 2022 Jul; 8(28):eabo7422. PubMed ID: 35857518
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Robust Molecular Dipole-Enabled Defect Passivation and Control of Energy-Level Alignment for High-Efficiency Perovskite Solar Cells.
    Wang B; Li H; Dai Q; Zhang M; Zou Z; Brédas JL; Lin Z
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17664-17670. PubMed ID: 34109700
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells.
    Zou Y; Guo R; Buyruk A; Chen W; Xiao T; Yin S; Jiang X; Kreuzer LP; Mu C; Ameri T; Schwartzkopf M; Roth SV; Müller-Buschbaum P
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52643-52651. PubMed ID: 33190484
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Defect Passivation Using Trichloromelamine for Highly Efficient and Stable Perovskite Solar Cells.
    Niu Q; Zhang L; Xu Y; Yuan C; Qi W; Fu S; Ma Y; Zeng W; Xia R; Min Y
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160390
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Multifunctional Polymer as an Interfacial Layer for Efficient and Stable Perovskite Solar Cells.
    Zhang B; Chen C; Wang X; Du X; Liu D; Sun X; Li Z; Hao L; Gao C; Li Y; Shao Z; Wang X; Cui G; Pang S
    Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202213478. PubMed ID: 36372778
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Perylene Monoimide Phosphorus Salt Interfacial Modified Crystallization for Highly Efficient and Stable Perovskite Solar Cells.
    Chen M; Tang Y; Qin R; Su Z; Yang F; Qin C; Yang J; Tang X; Li M; Liu H
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5556-5565. PubMed ID: 36689684
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Passivation of the Buried Interface via Preferential Crystallization of 2D Perovskite on Metal Oxide Transport Layers.
    Chen B; Chen H; Hou Y; Xu J; Teale S; Bertens K; Chen H; Proppe A; Zhou Q; Yu D; Xu K; Vafaie M; Liu Y; Dong Y; Jung EH; Zheng C; Zhu T; Ning Z; Sargent EH
    Adv Mater; 2021 Oct; 33(41):e2103394. PubMed ID: 34425038
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Efficient and Stable Perovskite Solar Cells with a High Open-Circuit Voltage Over 1.2 V Achieved by a Dual-Side Passivation Layer.
    Kim JH; Kim YR; Kim J; Oh CM; Hwang IW; Kim J; Zeiske S; Ki T; Kwon S; Kim H; Armin A; Suh H; Lee K
    Adv Mater; 2022 Oct; 34(41):e2205268. PubMed ID: 36030364
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Understanding the Mechanism between Antisolvent Dripping and Additive Doping Strategies on the Passivation Effects in Perovskite Solar Cells.
    Long J; Sheng W; Dai R; Huang Z; Yang J; Zhang J; Li X; Tan L; Chen Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56151-56160. PubMed ID: 33263982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.