BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37381438)

  • 1. Integrating collapsible plasmonic gaps on near-field probes for polarization-resolved mapping of plasmon-enhanced emission in 2D material.
    Zhou J; Barnard E; Cabrini S; Munechika K; Schwartzberg A; Weber-Bargioni A
    Opt Express; 2023 Jun; 31(12):20440-20448. PubMed ID: 37381438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips.
    Bao W; Staffaroni M; Bokor J; Salmeron MB; Yablonovitch E; Cabrini S; Weber-Bargioni A; Schuck PJ
    Opt Express; 2013 Apr; 21(7):8166-76. PubMed ID: 23571906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system.
    Klein AE; Janunts N; Steinert M; Tünnermann A; Pertsch T
    Nano Lett; 2014 Sep; 14(9):5010-5. PubMed ID: 25088302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps.
    Schnell M; Garcia-Etxarri A; Alkorta J; Aizpurua J; Hillenbrand R
    Nano Lett; 2010 Sep; 10(9):3524-8. PubMed ID: 20701270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber.
    Calafiore G; Koshelev A; Darlington TP; Borys NJ; Melli M; Polyakov A; Cantarella G; Allen FI; Lum P; Wong E; Sassolini S; Weber-Bargioni A; Schuck PJ; Cabrini S; Munechika K
    Sci Rep; 2017 May; 7(1):1651. PubMed ID: 28490793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Field Coupling with a Nanoimprinted Probe for Dark Exciton Nanoimaging in Monolayer WSe
    Zhou J; Thomas JC; Barre E; Barnard ES; Raja A; Cabrini S; Munechika K; Schwartzberg A; Weber-Bargioni A
    Nano Lett; 2023 Jun; 23(11):4901-4907. PubMed ID: 37262350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced subwavelength coupling and nano-focusing with optical fiber-plasmonic hybrid probe.
    Minn K; Howard Lee HW; Zhang Z
    Opt Express; 2019 Dec; 27(26):38098-38108. PubMed ID: 31878581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tip-Enhanced Photoluminescence of Freestanding Lateral Heterobubbles.
    Albagami A; Ambardar S; Hrim H; Sahoo PK; Emirov Y; Gutiérrez HR; Voronine DV
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):11006-11015. PubMed ID: 35170302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A platform for time-resolved scanning Kerr microscopy in the near-field.
    Keatley PS; Loughran THJ; Hendry E; Barnes WL; Hicken RJ; Childress JR; Katine JA
    Rev Sci Instrum; 2017 Dec; 88(12):123708. PubMed ID: 29289235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.
    Chen X; Lindquist NC; Klemme DJ; Nagpal P; Norris DJ; Oh SH
    Nano Lett; 2016 Dec; 16(12):7849-7856. PubMed ID: 27960527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sharp, high numerical aperture (NA), nanoimprinted bare pyramid probe for optical mapping.
    Zhou J; Gashi A; Riminucci F; Chang B; Barnard E; Cabrini S; Weber-Bargioni A; Schwartzberg A; Munechika K
    Rev Sci Instrum; 2023 Mar; 94(3):033902. PubMed ID: 37012819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid photonic-plasmonic near-field probe for efficient light conversion into the nanoscale hot spot.
    Koshelev A; Munechika K; Cabrini S
    Opt Lett; 2017 Nov; 42(21):4339-4342. PubMed ID: 29088158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution enhancing using cantilevered tip-on-aperture silicon probe in scanning near-field optical microscopy.
    Chang WS; Bauerdick S; Jeong MS
    Ultramicroscopy; 2008 Sep; 108(10):1070-5. PubMed ID: 18579310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution.
    Rahmani M; Yoxall E; Hopkins B; Sonnefraud Y; Kivshar Y; Hong M; Phillips C; Maier SA; Miroshnichenko AE
    ACS Nano; 2013 Dec; 7(12):11138-46. PubMed ID: 24187975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy.
    Yu H; Sun Q; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Nov; 10(11):10373-10381. PubMed ID: 27775321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes.
    Hermann RJ; Gordon MJ
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():365-387. PubMed ID: 29596000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes.
    Zito G; Rusciano G; Vecchione A; Pesce G; Di Girolamo R; Malafronte A; Sasso A
    Sci Rep; 2016 Aug; 6():31113. PubMed ID: 27502178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ evaluation of plasmonic enhancement of gold tips for plasmon-enhanced imaging techniques.
    Zhang J; Ruediger A
    Rev Sci Instrum; 2021 May; 92(5):053004. PubMed ID: 34243334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
    Grefe SE; Leiva D; Mastel S; Dhuey SD; Cabrini S; Schuck PJ; Abate Y
    Phys Chem Chem Phys; 2013 Nov; 15(43):18944-50. PubMed ID: 24097054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.