These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37381514)

  • 1. Autofocus properties of astigmatic chirped symmetric Pearcey Gaussian vortex beams in the fractional Schrödinger equation with parabolic potential.
    He S; Peng X; He Y; Deng D
    Opt Express; 2023 May; 31(11):17930-17942. PubMed ID: 37381514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the modulated vortex and second-order chirp on the propagation dynamics of ring Pearcey Gaussian beams.
    Zhang L; Deng D; Yang X; Wang G; Liu H
    Opt Lett; 2019 Oct; 44(19):4654-4657. PubMed ID: 31568409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abruptly autofocusing chirped ring Pearcey Gaussian vortex beams with caustics state in the nonlinear medium.
    Zhang L; Deng D; Yang X; Wang G; Liu H
    Opt Express; 2020 Jan; 28(1):425-434. PubMed ID: 32118969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation dynamics of Laguerre-Gaussian beams in the fractional Schrödinger equation with noise disturbance.
    Zhou W; Liu A; Huang X; Bai Y; Fu X
    J Opt Soc Am A Opt Image Sci Vis; 2022 Apr; 39(4):736-743. PubMed ID: 35471400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation dynamics of autofocusing circle Pearcey Gaussian vortex beams in a harmonic potential.
    Sun C; Deng D; Yang X; Wang G
    Opt Express; 2020 Jan; 28(1):325-333. PubMed ID: 32118961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation properties of autofocusing off-axis hollow vortex Gaussian beams in free space.
    Chen G; Huang X; Xu C; Huang L; Xie J; Deng D
    Opt Express; 2019 Mar; 27(5):6357-6369. PubMed ID: 30876222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagation properties and radiation forces of the Airy Gaussian vortex beams in a harmonic potential.
    Pang Z; Deng D
    Opt Express; 2017 Jun; 25(12):13635-13647. PubMed ID: 28788906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation dynamics and radiation forces of autofocusing circle Bessel Gaussian vortex beams in a harmonic potential.
    Wang H; Sun C; Tu J; Zhen W; Deng D
    Opt Express; 2021 Aug; 29(18):28110-28123. PubMed ID: 34614950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auto-focusing and self-healing of symmetric odd-Pearcey Gauss beams.
    Liu Y; Xu C; Lin Z; Wu Y; Wu Y; Wu L; Deng D
    Opt Lett; 2020 Jun; 45(11):2957-2960. PubMed ID: 32479432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation properties of Airy-Gaussian vortex beams through the gradient-index medium.
    Zhao R; Deng F; Yu W; Huang J; Deng D
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jun; 33(6):1025-31. PubMed ID: 27409428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.
    Zhang L; Li C; Zhong H; Xu C; Lei D; Li Y; Fan D
    Opt Express; 2016 Jun; 24(13):14406-18. PubMed ID: 27410594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonparaxial propagation of the chirped Airy vortex beams in uniaxial crystal orthogonal to the optical axis.
    Zhang J; Zhou K; Liang J; Lai Z; Yang X; Deng D
    Opt Express; 2018 Jan; 26(2):1290-1304. PubMed ID: 29402004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetric Pearcey Gaussian beams.
    Wu Y; Zhao J; Lin Z; Huang H; Xu C; Liu Y; Chen K; Fu X; Qiu H; Liu H; Wang G; Yang X; Deng D; Shui L
    Opt Lett; 2021 May; 46(10):2461-2464. PubMed ID: 33988610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation Dynamics of a Light Beam in a Fractional Schrödinger Equation.
    Zhang Y; Liu X; Belić MR; Zhong W; Zhang Y; Xiao M
    Phys Rev Lett; 2015 Oct; 115(18):180403. PubMed ID: 26565442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible autofocusing properties of ring Pearcey beams by means of a cross phase.
    Xin L; Li Z; Monfared YE; Liang C; Wang F; Hoenders BJ; Cai Y; Ma P
    Opt Lett; 2021 Jan; 46(1):70-73. PubMed ID: 33362019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation of sharply autofocused ring Airy Gaussian vortex beams.
    Chen B; Chen C; Peng X; Peng Y; Zhou M; Deng D
    Opt Express; 2015 Jul; 23(15):19288-98. PubMed ID: 26367590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a modulated vortex structure on the diffraction dynamics of ring Airy Gaussian beams.
    Huang X; Shi X; Deng Z; Bai Y; Fu X
    J Opt Soc Am A Opt Image Sci Vis; 2017 Sep; 34(9):1720-1726. PubMed ID: 29036146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Gaussian beam modeled by fractional Schrödinger equation with a variable coefficient.
    Zang F; Wang Y; Li L
    Opt Express; 2018 Sep; 26(18):23740-23750. PubMed ID: 30184870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffraction-free beams in fractional Schrödinger equation.
    Zhang Y; Zhong H; Belić MR; Ahmed N; Zhang Y; Xiao M
    Sci Rep; 2016 Apr; 6():23645. PubMed ID: 27097656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation properties and radiation forces of the Hermite-Gaussian vortex beam in a medium with a parabolic refractive index.
    Wu Y; Wu J; Lin Z; Fu X; Qiu H; Chen K; Deng D
    Appl Opt; 2020 Sep; 59(27):8342-8348. PubMed ID: 32976420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.