These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37381529)

  • 1. Fingerprint construction of optical transmitters based on the characteristic of electro-optic chaos for secure authentication.
    Li Z; Wang H; Ji Y
    Opt Express; 2023 May; 31(11):18109-18127. PubMed ID: 37381529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical transmitter fingerprint construction and identification based on chaotic phase space reconfiguration.
    Yu M; Wang H; Ji Y
    Opt Express; 2023 Aug; 31(17):28212-28228. PubMed ID: 37710881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigations of synchronization and communication based on an electro-optic phase chaos system with concealment of time delay.
    Li Q; Chen D; Bao Q; Zeng R; Hu M
    Appl Opt; 2019 Mar; 58(7):1715-1722. PubMed ID: 30874205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key space enhancement of a chaos secure communication based on VCSELs with a common phase-modulated electro-optic feedback.
    Wang H; Lu T; Ji Y
    Opt Express; 2020 Aug; 28(16):23961-23977. PubMed ID: 32752384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 56 Gb/s PAM4 physical secure communication based on electro-optic self-feedback hardware temporal phase encryption and decryption.
    Gao Z; Luo Y; Zhang L; Tang B; Gao X; Gu W; Sun Y; Li Z; Qin Y; Wang Y
    Opt Express; 2023 Jan; 31(2):1666-1676. PubMed ID: 36785197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variational autoencoder-assisted unsupervised hardware fingerprint authentication in a fiber network.
    Qiu Y; Peng X; Huang X; Chai Z; Li M; Hu W; Yang X
    Opt Lett; 2024 Apr; 49(8):2029-2032. PubMed ID: 38621068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-delay signature concealing electro-optic chaotic system with multiply feedback nonlinear loops.
    Bai J; Wang H; Ji Y
    Opt Express; 2021 Jan; 29(2):706-718. PubMed ID: 33726301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic optical communications at 56 Gbit/s over 100-km fiber transmission based on a chaos generation model driven by long short-term memory networks.
    Jiang L; Feng J; Yan L; Yi A; Li SS; Yang H; Dong Y; Wang L; Wang A; Wang Y; Pan W; Luo B
    Opt Lett; 2022 May; 47(10):2382-2385. PubMed ID: 35561356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical-layer encryption and authentication scheme based on SKGD and 4D hyper-chaos.
    Wang D; Wang H; Xu H; Ji Y
    Opt Express; 2023 Mar; 31(7):11829-11845. PubMed ID: 37155810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wideband complex-enhanced bidirectional phase chaotic secure communication with time-delay signature concealment.
    Lu T; Wang H; Ji Y
    Chaos; 2020 Sep; 30(9):093138. PubMed ID: 33003936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secure free-space communication, turbulence mitigation, and other applications using acousto-optic chaos.
    Chatterjee MR; Mohamed A; Almehmadi FS
    Appl Opt; 2018 Apr; 57(10):C1-C13. PubMed ID: 29714266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop.
    Jiang X; Cheng M; Luo F; Deng L; Fu S; Ke C; Zhang M; Tang M; Shum P; Liu D
    Opt Express; 2016 Dec; 24(25):28804-28814. PubMed ID: 27958524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A time-delay signature elimination and broadband electro-optic chaotic system with enhanced nonlinearity by deep learning.
    Lu Y; Wang H; Ji Y
    Opt Express; 2022 May; 30(11):17698-17712. PubMed ID: 36221586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wideband chaos generation using a delayed oscillator and a two-dimensional nonlinearity induced by a quadrature phase-shift-keying electro-optic modulator.
    Nourine M; Chembo YK; Larger L
    Opt Lett; 2011 Aug; 36(15):2833-5. PubMed ID: 21808328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-haul dense wavelength division multiplexing between a chaotic optical secure channel and a conventional fiber-optic channel.
    Zhao Q; Yin H; Chen X
    Appl Opt; 2012 Aug; 51(22):5585-90. PubMed ID: 22859052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos.
    Ai J; Wang L; Wang J
    Opt Lett; 2017 Sep; 42(18):3662-3665. PubMed ID: 28914927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed secure key distribution based on interference spectrum-shift keying with signal mutual modulation in commonly driven chaos synchronization.
    Deng Z; Gao X; An Y; Wang A; Fu S; Wang Y; Yuwen Q; Gao Z
    Opt Express; 2023 Dec; 31(25):42449-42463. PubMed ID: 38087619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust chaotic-shift-keying scheme based on electro-optical hybrid feedback system.
    Gao X; Cheng M; Deng L; Zhang M; Fu S; Liu D
    Opt Express; 2020 Apr; 28(8):10847-10858. PubMed ID: 32403607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation.
    Cheng M; Deng L; Li H; Liu D
    Opt Express; 2014 Mar; 22(5):5241-51. PubMed ID: 24663864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical single-channel color image encryption based on chaotic fingerprint phase mask and diffractive imaging.
    Wang Y; Zhao Q; Zhang H; Li T; Xu W; Liu S; Su Y
    Appl Opt; 2023 Feb; 62(4):1009-1018. PubMed ID: 36821155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.