These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37381642)

  • 1. Amine-Aldehyde Condensation-Derived N-Doped Hard Carbon Microspheres for High-Capacity and Robust Sodium Storage.
    Chen R; Li X; Cai C; Fan H; Deng Y; Yu H; Mai L; Zhou L
    Small; 2023 Nov; 19(44):e2303790. PubMed ID: 37381642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulating the Interlayer Spacings of Hard Carbon Nanofibers Enables Enhanced Pore Filling Sodium Storage.
    Cai C; Chen Y; Hu P; Zhu T; Li X; Yu Q; Zhou L; Yang X; Mai L
    Small; 2022 Feb; 18(6):e2105303. PubMed ID: 34854545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable synthesis of N/S co-doped hard carbon microspheres as a high-performance anode material for sodium-ion batteries.
    Zhang Z; Huang B; Lai T; Sheng A; Zhong S; Yang J; Li Y
    Nanotechnology; 2023 Dec; 35(11):. PubMed ID: 38081064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing High-Capacity and High-Rate Sodium-Ion Storage through Synergistic N,S Dual Doping of Hard Carbon.
    Cui Y; Cen M; Wang L; Zhang Y; Wang J; Lian J; Li H
    Chem Asian J; 2023 Aug; 18(16):e202300449. PubMed ID: 37382427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Proportion of Active Nitrogen-Doped Hard Carbon Based on Mannich Reaction as Anode Material for High-Performance Sodium-Ion Batteries.
    Huang G; Kong Q; Yao W; Wang Q
    ChemSusChem; 2023 Apr; 16(7):e202202070. PubMed ID: 36624045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P-doped spherical hard carbon with high initial coulombic efficiency and enhanced capacity for sodium ion batteries.
    Liu ZG; Zhao J; Yao H; He XX; Zhang H; Qiao Y; Wu XQ; Li L; Chou SL
    Chem Sci; 2024 Jun; 15(22):8478-8487. PubMed ID: 38846387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery.
    Zhang H; Ming H; Zhang W; Cao G; Yang Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23766-23774. PubMed ID: 28650143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing hard carbon microsphere structure via halogenation amination and oxidative polymerization reactions for sodium ion insertion mechanism investigation.
    Zhao Y; Zheng J; Zhao Y; Zhang K; Fu W; Wang G; Wang H; Hao Y; Lin Z; Cao X; Liu J; Zhang M; Shen Z
    J Colloid Interface Sci; 2024 Aug; 668():202-212. PubMed ID: 38677209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Nitrogen-Doped Porous Carbon Microspheres as Anode for High Performance Sodium Ion Batteries.
    Xu K; Pan Q; Zheng F; Zhong G; Wang C; Wu S; Yang C
    Front Chem; 2019; 7():733. PubMed ID: 31737606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Structural Design and Adsorption/Insertion Coordinating Quasi-Metallic Na Storage Mechanism toward High-performance Hard Carbon Anode Derived from Carboxymethyl Cellulose.
    Zhao Y; Hu Z; Fan C; Gao P; Zhang R; Liu Z; Liu J; Liu J
    Small; 2023 Oct; 19(41):e2303296. PubMed ID: 37294167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Natural Fibers to High-Performance Anodes: Sisal Hemp Derived Hard Carbon for Na-/K-Ion Batteries and Mechanism Exploration.
    Ou H; Pei B; Zhou Y; Yang M; Pan J; Liang S; Cao X
    Small Methods; 2024 Aug; ():e2400839. PubMed ID: 39169737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Design and General Synthesis of S-Doped Hard Carbon with Tunable Doping Sites toward Excellent Na-Ion Storage Performance.
    Hong Z; Zhen Y; Ruan Y; Kang M; Zhou K; Zhang JM; Huang Z; Wei M
    Adv Mater; 2018 May; ():e1802035. PubMed ID: 29808566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended Plateau Capacity of Hard Carbon Anode for High Energy Lithium-Ion Batteries.
    Ji X; Wei Y; Yang H; Lu Z; Jin S; Jin H; Kong X; Ji H
    Small; 2024 Oct; 20(42):e2402616. PubMed ID: 39031846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing Abundant Oxygen-Containing Functional Groups in Hard Carbon Derived from Anthracite for High-Performance Sodium-Ion Batteries.
    Xu Y; Guo D; Luo Y; Xu J; Guo K; Wang W; Liu G; Wu N; Liu X; Qin A
    Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid Template Assisted Activation for "Egg Puff"-Like Hard Carbon toward High Sodium Storage Performance.
    Guo M; Zhang H; Huang Z; Li W; Zhang D; Gao C; Gao F; He P; Wang J; Chen W; Chen X; Terrones M; Wang Y
    Small; 2023 Sep; 19(39):e2302583. PubMed ID: 37236201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft-Carbon-Coated, Free-Standing, Low-Defect, Hard-Carbon Anode To Achieve a 94% Initial Coulombic Efficiency for Sodium-Ion Batteries.
    He XX; Zhao JH; Lai WH; Li R; Yang Z; Xu CM; Dai Y; Gao Y; Liu XH; Li L; Xu G; Qiao Y; Chou SL; Wu M
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44358-44368. PubMed ID: 34506123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into a Nitrogen-Doping Mechanism in a Hard-Carbon-Microsphere Anode Material for the Long-Term Cycling of Potassium-Ion Batteries.
    Chen C; Zhao K; La M; Yang C
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermally Assisted Conversion of Switchgrass into Hard Carbon as Anode Materials for Sodium-Ion Batteries.
    Li Y; Xia D; Tao L; Xu Z; Yu D; Jin Q; Lin F; Huang H
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28461-28472. PubMed ID: 38780280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urchinlike ZnS Microspheres Decorated with Nitrogen-Doped Carbon: A Superior Anode Material for Lithium and Sodium Storage.
    Li J; Fu Y; Shi X; Xu Z; Zhang Z
    Chemistry; 2017 Jan; 23(1):157-166. PubMed ID: 27739614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realizing Improved Sodium-Ion Storage by Introducing Carbonyl Groups and Closed Micropores into a Biomass-Derived Hard Carbon Anode.
    Deng W; Cao Y; Yuan G; Liu G; Zhang X; Xia Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47728-47739. PubMed ID: 34585568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.