These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37381654)

  • 21. Self-Transformation Strategy Toward Vanadium Dioxide Cathode For Advanced Aqueous Zinc Batteries.
    Deng W; Xu Z; Li G; Wang X
    Small; 2023 Jun; 19(24):e2207754. PubMed ID: 36896996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering Oxygen Vacancies on VO
    Si R; Yi S; Liu H; Yu F; Bao W; Guo C; Li J
    Chemistry; 2023 Jul; 29(39):e202300409. PubMed ID: 37125433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Defect Induction in Close-Packed Lattice Plane for the Efficient Zinc Ion Storage.
    Xie X; Fang G; Xu W; Li J; Long M; Liang S; Cao G; Pan A
    Small; 2021 Oct; 17(40):e2101944. PubMed ID: 34469065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manipulating Coulombic Efficiency of Cathodes in Aqueous Zinc Batteries by Anion Chemistry.
    Li P; Wang Y; Xiong Q; Hou Y; Yang S; Cui H; Zhu J; Li X; Wang Y; Zhang R; Zhang S; Wang X; Jin X; Bai S; Zhi C
    Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202303292. PubMed ID: 37017579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methods for Characterizing Intercalation in Aqueous Zinc Ion Battery Cathodes: A Review.
    Tay IR; Xue J; Lee WSV
    Adv Sci (Weinh); 2023 Sep; 10(26):e2303211. PubMed ID: 37424052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rechargeable Aqueous Electrochromic Batteries Utilizing Ti-Substituted Tungsten Molybdenum Oxide Based Zn
    Li H; McRae L; Firby CJ; Elezzabi AY
    Adv Mater; 2019 Apr; 31(15):e1807065. PubMed ID: 30803069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boosting Magnesium Ion Storage Behavior via Heteroelement Doping in a Porous Tunnel Framework Cathode for Aqueous Mg-Ion Batteries.
    Li Z; Chen Y; Gong Z; Liu Y; Wang G; Gao Y; Zhu K; Cao D
    Chem Asian J; 2023 Jun; 18(12):e202300208. PubMed ID: 37162452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insight on Cathodes Chemistry for Aqueous Zinc-Ion Batteries: From Reaction Mechanisms, Structural Engineering, and Modification Strategies.
    Liu A; Wu F; Zhang Y; Zhou J; Zhou Y; Xie M
    Small; 2022 Jul; 18(28):e2201011. PubMed ID: 35710875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Boosting Zn-Ion Storage Performance of Bronze-Type VO
    Cai Y; Chua R; Kou Z; Ren H; Yuan D; Huang S; Kumar S; Verma V; Amonpattaratkit P; Srinivasan M
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36110-36118. PubMed ID: 32701255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Material Design and Energy Storage Mechanism of Mn-Based Cathodes for Aqueous Zinc-Ion Batteries.
    Xie S; Li X; Li Y; Liang Q; Dong L
    Chem Rec; 2022 Oct; 22(10):e202200201. PubMed ID: 36126168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deciphering an Abnormal Layered-Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode.
    Xiao Y; Zhu YF; Xiang W; Wu ZG; Li YC; Lai J; Li S; Wang E; Yang ZG; Xu CL; Zhong BH; Guo XD
    Angew Chem Int Ed Engl; 2020 Jan; 59(4):1491-1495. PubMed ID: 31677318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Zn-Ion Batteries.
    Sun Q; Cheng H; Nie W; Lu X; Zhao H
    Chem Asian J; 2022 Apr; 17(7):e202200067. PubMed ID: 35188329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cathodes for Aqueous Zn-Ion Batteries: Materials, Mechanisms, and Kinetics.
    Zuo S; Xu X; Ji S; Wang Z; Liu Z; Liu J
    Chemistry; 2021 Jan; 27(3):830-860. PubMed ID: 32830335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulating the Interlayer Spacing of Vanadium Oxide by In Situ Polyaniline Intercalation Enables an Improved Aqueous Zinc-Ion Storage Performance.
    Yin C; Pan C; Liao X; Pan Y; Yuan L
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39347-39354. PubMed ID: 34383482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capacity-enhanced and kinetic-expedited zinc-ion storage ability in a Zn
    Yang L; Jian J; Wang S; Wang S; Abliz A; Zhao F; Li H; Wu J; Wang Y
    Dalton Trans; 2022 Oct; 51(40):15436-15445. PubMed ID: 36156619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water-Processable and Multiscale-Designed Vanadium Oxide Cathodes with Predominant Zn
    Liu X; Ni W; Wang Y; Liang Y; Wu B; Xu G; Wei X; Yang L
    Small; 2022 Mar; 18(10):e2105796. PubMed ID: 35038222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Boosting the zinc ion storage capacity and cycling stability of interlayer-expanded vanadium disulfide through in-situ electrochemical oxidation strategy.
    Yang M; Wang Z; Ben H; Zhao M; Luo J; Chen D; Lu Z; Wang L; Liu C
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):68-75. PubMed ID: 34492355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries.
    Li J; Luo N; Wan F; Zhao S; Li Z; Li W; Guo J; Shearing PR; Brett DJL; Carmalt CJ; Chai G; He G; Parkin IP
    Nanoscale; 2020 Oct; 12(40):20638-20648. PubMed ID: 32657312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cobalt Ion-Stabilized VO
    Chen Q; Tang Z; Li H; Liang W; Zeng Y; Zhang J; Hou G; Tang Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18824-18832. PubMed ID: 38566471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries.
    Li C; Li M; Xu H; Zhao F; Gong S; Wang H; Qi J; Wang Z; Fan X; Peng W; Liu J
    J Colloid Interface Sci; 2022 Oct; 623():277-284. PubMed ID: 35597011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.