These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37381782)
1. Molecular Mechanism of miR160d in Regulating Kiwifruit Resistance to Li Z; Yang S; Ma Y; Sui Y; Xing H; Zhang W; Liao Q; Jiang Y J Agric Food Chem; 2023 Jul; 71(27):10304-10313. PubMed ID: 37381782 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the role of AcTPR2 in kiwifruit and its response to Botrytis cinerea infection. Li ZX; Lan JB; Liu YQ; Qi LW; Tang JM BMC Plant Biol; 2020 Dec; 20(1):557. PubMed ID: 33302873 [TBL] [Abstract][Full Text] [Related]
3. The role of AcPGIP in the kiwifruit (Actinidia chinensis) response to Botrytis cinerea. Li ZX; Chen M; Miao YX; Li Q; Ren Y; Zhang WL; Lan JB; Liu YQ Funct Plant Biol; 2021 Nov; 48(12):1254-1263. PubMed ID: 34600600 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis). Wu L; Lan J; Xiang X; Xiang H; Jin Z; Khan S; Liu Y PLoS One; 2020; 15(10):e0240355. PubMed ID: 33044982 [TBL] [Abstract][Full Text] [Related]
6. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733 [TBL] [Abstract][Full Text] [Related]
7. Dipicolinic acid enhances kiwifruit resistance to Botrytis cinerea by promoting phenolics accumulation. Wang SY; Pang YB; Tao Y; Shi XC; Zhang YJ; Wang YX; Jiang YH; Ji XY; Wang BL; Herrera-Balandrano DD; Laborda P Pest Manag Sci; 2023 Sep; 79(9):3177-3189. PubMed ID: 37024430 [TBL] [Abstract][Full Text] [Related]
8. RcTGA1 and glucosinolate biosynthesis pathway involvement in the defence of rose against the necrotrophic fungus Botrytis cinerea. Gao P; Zhang H; Yan H; Wang Q; Yan B; Jian H; Tang K; Qiu X BMC Plant Biol; 2021 May; 21(1):223. PubMed ID: 34001006 [TBL] [Abstract][Full Text] [Related]
9. Curcumin Induces Oxidative Stress in Hua C; Kai K; Bi W; Shi W; Liu Y; Zhang D J Agric Food Chem; 2019 Jul; 67(28):7968-7976. PubMed ID: 31062982 [TBL] [Abstract][Full Text] [Related]
10. Kiwifruit resistance to gray mold is enhanced by yeast-induced modulation of the endophytic microbiome. Liao Q; Zhao Y; Wang Z; Yu L; Su Q; Li J; Yuan A; Wang J; Tian D; Lin C; Huang X; Li W; Sun Z; Wang Q; Liu J Sci Total Environ; 2024 Jul; 932():173109. PubMed ID: 38729361 [TBL] [Abstract][Full Text] [Related]
11. Vishniacozyma victoriae: An endophytic antagonist yeast of kiwifruit with biocontrol effect to Botrytis cinerea. Nian L; Xie Y; Zhang H; Wang M; Yuan B; Cheng S; Cao C Food Chem; 2023 Jun; 411():135442. PubMed ID: 36652885 [TBL] [Abstract][Full Text] [Related]
12. Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection. Liu X; Cao X; Shi S; Zhao N; Li D; Fang P; Chen X; Qi W; Zhang Z BMC Genet; 2018 Aug; 19(1):62. PubMed ID: 30126371 [TBL] [Abstract][Full Text] [Related]
13. Strawberry Jia S; Wang Y; Zhang G; Yan Z; Cai Q Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396436 [TBL] [Abstract][Full Text] [Related]
14. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton. Gao W; Long L; Xu L; Lindsey K; Zhang X; Zhu L J Integr Plant Biol; 2016 May; 58(5):503-13. PubMed ID: 26407676 [TBL] [Abstract][Full Text] [Related]
15. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697 [TBL] [Abstract][Full Text] [Related]
16. Phenotypic and Genetic Characterization of Botrytis cinerea Population from Kiwifruit in Sichuan Province, China. Pei YG; Tao QJ; Zheng XJ; Li Y; Sun XF; Li ZF; Qi XB; Xu J; Zhang M; Chen HB; Chang XL; Tang HM; Sui LY; Gong GS Plant Dis; 2019 Apr; 103(4):748-758. PubMed ID: 30789316 [TBL] [Abstract][Full Text] [Related]
17. Proteomic Analysis of Kiwifruit in Response to the Postharvest Pathogen, Liu J; Sui Y; Chen H; Liu Y; Liu Y Front Plant Sci; 2018; 9():158. PubMed ID: 29497428 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato. Zhang X; Xu Z; Chen L; Ren Z BMC Plant Biol; 2019 Oct; 19(1):437. PubMed ID: 31638895 [TBL] [Abstract][Full Text] [Related]
19. Isolation and functional identification of a Botrytis cinerea-responsive caffeoyl-CoA O-methyltransferase gene from Lilium regale wilson. Fu Y; Zhu Y; Yang W; Xu W; Li Q; Chen M; Yang L Plant Physiol Biochem; 2020 Dec; 157():379-389. PubMed ID: 33197727 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms and strategies of plant defense against Botrytis cinerea. AbuQamar S; Moustafa K; Tran LS Crit Rev Biotechnol; 2017 Mar; 37(2):262-274. PubMed ID: 28056558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]