These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37382150)
21. Level Alignment as Descriptor for Semiconductor/Catalyst Systems in Water Splitting: The Case of Hematite/Cobalt Hexacyanoferrate Photoanodes. Hegner FS; Cardenas-Morcoso D; Giménez S; López N; Galan-Mascaros JR ChemSusChem; 2017 Nov; 10(22):4552-4560. PubMed ID: 28967707 [TBL] [Abstract][Full Text] [Related]
22. Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co Wang Y; Li F; Zhou X; Yu F; Du J; Bai L; Sun L Angew Chem Int Ed Engl; 2017 Jun; 56(24):6911-6915. PubMed ID: 28474835 [TBL] [Abstract][Full Text] [Related]
23. Rational Design Combining Morphology and Charge-Dynamic for Hematite/Nickel-Iron Oxide Thin-Layer Photoanodes: Insights into the Role of the Absorber/Catalyst Junction. Orlandi M; Berardi S; Mazzi A; Caramori S; Boaretto R; Nart F; Bignozzi CA; Bazzanella N; Patel N; Miotello A ACS Appl Mater Interfaces; 2019 Dec; 11(51):48002-48012. PubMed ID: 31797662 [TBL] [Abstract][Full Text] [Related]
24. Porous versus Compact Nanosized Fe(III)-Based Water Oxidation Catalyst for Photoanodes Functionalization. Orlandi M; Dalle Carbonare N; Caramori S; Bignozzi CA; Berardi S; Mazzi A; El Koura Z; Bazzanella N; Patel N; Miotello A ACS Appl Mater Interfaces; 2016 Aug; 8(31):20003-11. PubMed ID: 27447454 [TBL] [Abstract][Full Text] [Related]
25. Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Thorne JE; Jang JW; Liu EY; Wang D Chem Sci; 2016 May; 7(5):3347-3354. PubMed ID: 29997828 [TBL] [Abstract][Full Text] [Related]
26. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Mayer MT; Lin Y; Yuan G; Wang D Acc Chem Res; 2013 Jul; 46(7):1558-66. PubMed ID: 23425045 [TBL] [Abstract][Full Text] [Related]
27. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst. Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494 [TBL] [Abstract][Full Text] [Related]
28. Water oxidation at hematite photoelectrodes: the role of surface states. Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953 [TBL] [Abstract][Full Text] [Related]
29. Photoelectrochemical water oxidation by a MOF/semiconductor composite. Gibbons B; Cairnie DR; Thomas B; Yang X; Ilic S; Morris AJ Chem Sci; 2023 May; 14(18):4672-4680. PubMed ID: 37181771 [TBL] [Abstract][Full Text] [Related]
30. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting. Mao L; Huang YC; Fu Y; Dong CL; Shen S Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607 [TBL] [Abstract][Full Text] [Related]
31. Tuning Ni-Foam into NiOOH/FeOOH Heterostructures toward Superior Water Oxidation Catalyst via Three-Step Strategy. Yin J; Di F; Guo J; Zhang K; Xu W; Wang Y; Shi S; Chai N; Chu C; Wei J; Li W; Shao X; Pu X; Zhang D; Ren X; Wang J; Zhao J; Zhang X; Wei X; Wang F; Zhou H ACS Omega; 2018 Sep; 3(9):11009-11017. PubMed ID: 31459211 [TBL] [Abstract][Full Text] [Related]
32. Metal-Organic Framework Glass Catalysts from Melting Glass-Forming Cobalt-Based Zeolitic Imidazolate Framework for Boosting Photoelectrochemical Water Oxidation. Song Y; Ren Y; Cheng H; Jiao Y; Shi S; Gao L; Xie H; Gao J; Sun L; Hou J Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202306420. PubMed ID: 37264717 [TBL] [Abstract][Full Text] [Related]
33. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes. Klahr B; Gimenez S; Fabregat-Santiago F; Bisquert J; Hamann TW J Am Chem Soc; 2012 Oct; 134(40):16693-700. PubMed ID: 22950478 [TBL] [Abstract][Full Text] [Related]
34. An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting. Morales-Guio CG; Mayer MT; Yella A; Tilley SD; Grätzel M; Hu X J Am Chem Soc; 2015 Aug; 137(31):9927-36. PubMed ID: 26200221 [TBL] [Abstract][Full Text] [Related]
35. An Optocatalytic Model for Semiconductor-Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts. Trotochaud L; Mills TJ; Boettcher SW J Phys Chem Lett; 2013 Mar; 4(6):931-5. PubMed ID: 26291358 [TBL] [Abstract][Full Text] [Related]
36. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting. Klotz D; Grave DA; Rothschild A Phys Chem Chem Phys; 2017 Aug; 19(31):20383-20392. PubMed ID: 28721404 [TBL] [Abstract][Full Text] [Related]
37. Rate law analysis of water oxidation on a hematite surface. Le Formal F; Pastor E; Tilley SD; Mesa CA; Pendlebury SR; Grätzel M; Durrant JR J Am Chem Soc; 2015 May; 137(20):6629-37. PubMed ID: 25936408 [TBL] [Abstract][Full Text] [Related]
38. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Wang G; Ling Y; Lu X; Zhai T; Qian F; Tong Y; Li Y Nanoscale; 2013 May; 5(10):4129-33. PubMed ID: 23563928 [TBL] [Abstract][Full Text] [Related]
39. Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient Photo-Electrochemical Water Splitting. Li C; Luo Z; Wang T; Gong J Adv Mater; 2018 Jul; 30(30):e1707502. PubMed ID: 29750372 [TBL] [Abstract][Full Text] [Related]
40. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting. Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]