These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 37382366)
41. Galactose-Containing Polymer-DOX Conjugates for Targeting Drug Delivery. Sun Y; Zhang J; Han J; Tian B; Shi Y; Ding Y; Wang L; Han J AAPS PharmSciTech; 2017 Apr; 18(3):749-758. PubMed ID: 27287244 [TBL] [Abstract][Full Text] [Related]
42. Viscoelastic behavior and in vivo release study of microgel dispersions with inverse thermoreversible gelation. Zhou J; Wang G; Zou L; Tang L; Marquez M; Hu Z Biomacromolecules; 2008 Jan; 9(1):142-8. PubMed ID: 18067257 [TBL] [Abstract][Full Text] [Related]
43. Novel microgel-based scaffolds to study the effect of degradability on human dermal fibroblasts. Zhou W; Stukel J; AlNiemi A; Willits RK Biomed Mater; 2018 Jul; 13(5):055007. PubMed ID: 29869613 [TBL] [Abstract][Full Text] [Related]
44. Modifiable natural gum based microgel capsules as sustainable drug delivery systems. Sagbas S; Sahiner N Carbohydr Polym; 2018 Nov; 200():128-136. PubMed ID: 30177149 [TBL] [Abstract][Full Text] [Related]
45. Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels. Meid J; Friedrich T; Tieke B; Lindner P; Richtering W Phys Chem Chem Phys; 2011 Feb; 13(8):3039-47. PubMed ID: 20882241 [TBL] [Abstract][Full Text] [Related]
46. The design and straightforward synthesis of multifunctional DNA microgels for the improved targeted delivery of antitumor drugs. Li F; Gong J; Shi T; Ren X; Cui X; Xiao L; Liu J; Qiu F Int J Pharm; 2023 Aug; 643():123242. PubMed ID: 37467815 [TBL] [Abstract][Full Text] [Related]
47. Chitosan-gelatin-based microgel for sustained drug delivery. Wang K; Lin S; Nune KC; Misra RD J Biomater Sci Polym Ed; 2016; 27(5):441-53. PubMed ID: 26775820 [TBL] [Abstract][Full Text] [Related]
48. Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors. Madrigal JL; Sharma SN; Campbell KT; Stilhano RS; Gijsbers R; Silva EA Acta Biomater; 2018 Mar; 69():265-276. PubMed ID: 29398644 [TBL] [Abstract][Full Text] [Related]
49. Structural and mechanistic insights into starch microgel/anthocyanin complex assembly and controlled release performance. Chen L; Zhang D; Wei LF; Zhu WJ; Yan XQ; Zhou R; Din ZU; Ding WP; Ma TZ; Cai J Int J Biol Macromol; 2022 Jul; 213():718-727. PubMed ID: 35636527 [TBL] [Abstract][Full Text] [Related]
50. Cross-linked Pluronic-g-Polyacrylic acid microgel system for the controlled release of doxorubicin in pharmaceutical formulations. Tian Y; Grishkewich N; Bromberg L; Hatton TA; Tam KC Eur J Pharm Biopharm; 2017 May; 114():230-238. PubMed ID: 28126393 [TBL] [Abstract][Full Text] [Related]
51. Construction of Core-Shell NanoMOFs@microgel for Aqueous Lubrication and Thermal-Responsive Drug Release. Wu W; Liu J; Gong P; Li Z; Ke C; Qian Y; Luo H; Xiao L; Zhou F; Liu W Small; 2022 Jul; 18(28):e2202510. PubMed ID: 35710878 [TBL] [Abstract][Full Text] [Related]
52. Unusual temperature-induced swelling of ionizable poly(N-isopropylacrylamide)-based microgels: experimental and theoretical insights into its molecular origin. Giussi JM; Velasco MI; Longo GS; Acosta RH; Azzaroni O Soft Matter; 2015 Dec; 11(45):8879-86. PubMed ID: 26400774 [TBL] [Abstract][Full Text] [Related]
53. Double security drug delivery system DDS constructed by multi-responsive (pH/redox/US) microgel. Lei B; Chen M; Wang Y; Zhang J; Xu S; Liu H Colloids Surf B Biointerfaces; 2020 Sep; 193():111022. PubMed ID: 32416517 [TBL] [Abstract][Full Text] [Related]
54. HEMA based pH-sensitive semi IPN microgels for oral delivery; a rationale approach for ketoprofen. Zia MA; Sohail M; Minhas MU; Sarfraz RM; Khan S; de Matas M; Hussain Z; Abbasi M; Shah SA; Kousar M; Ahmad N Drug Dev Ind Pharm; 2020 Feb; 46(2):272-282. PubMed ID: 31928342 [No Abstract] [Full Text] [Related]
55. Influence of size, crosslinking degree and surface structure of poly(N-vinylcaprolactam)-based microgels on their penetration into multicellular tumor spheroids. Zhang C; Gau E; Sun W; Zhu J; Schmidt BM; Pich A; Shi X Biomater Sci; 2019 Nov; 7(11):4738-4747. PubMed ID: 31502601 [TBL] [Abstract][Full Text] [Related]
56. Preparation and self-assembly of ionic (PNIPAM- Yang J; Huang B; Lv Z; Cao Z RSC Adv; 2023 Jan; 13(6):3425-3437. PubMed ID: 36756607 [TBL] [Abstract][Full Text] [Related]
57. From Batch to Continuous Precipitation Polymerization of Thermoresponsive Microgels. Wolff HJM; Kather M; Breisig H; Richtering W; Pich A; Wessling M ACS Appl Mater Interfaces; 2018 Jul; 10(29):24799-24806. PubMed ID: 29952202 [TBL] [Abstract][Full Text] [Related]
58. Development and characterization of colloidal pNIPAM-methylcellulose microgels with potential application for drug delivery in dentoalveolar tissue engineering strategies. Salar Amoli M; Yang H; Anand R; EzEldeen M; Aktan MK; Braem A; Jacobs R; Bloemen V Int J Biol Macromol; 2024 Mar; 262(Pt 1):129684. PubMed ID: 38307741 [TBL] [Abstract][Full Text] [Related]
59. Synthesis and characterization of Schiff base contained dextran microgels in water-in-oil inverse microemulsion. Su H; Jia Q; Shan S Carbohydr Polym; 2016 Nov; 152():156-162. PubMed ID: 27516260 [TBL] [Abstract][Full Text] [Related]
60. FRET-derived ratiometric fluorescent K+ sensors fabricated from thermoresponsive poly(N-isopropylacrylamide) microgels labeled with crown ether moieties. Yin J; Li C; Wang D; Liu S J Phys Chem B; 2010 Sep; 114(38):12213-20. PubMed ID: 20825175 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]