BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37383751)

  • 1. Dataset of bimanual human-to-human object handovers.
    Kshirsagar A; Fortuna R; Xie Z; Hoffman G
    Data Brief; 2023 Jun; 48():109277. PubMed ID: 37383751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-Human Handover Tasks and How Distance and Object Mass Matter.
    Hansen C; Arambel P; Ben Mansour K; Perdereau V; Marin F
    Percept Mot Skills; 2017 Feb; 124(1):182-199. PubMed ID: 30208781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the choice of grasp type and location when handing over an object.
    Cini F; Ortenzi V; Corke P; Controzzi M
    Sci Robot; 2019 Feb; 4(27):. PubMed ID: 33137738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing human-robot handovers: the impact of adaptive transport methods.
    Käppler M; Mamaev I; Alagi H; Stein T; Deml B
    Front Robot AI; 2023; 10():1155143. PubMed ID: 37520939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Preferences for Robot Eye Gaze in Human-to-Robot Handovers.
    Faibish T; Kshirsagar A; Hoffman G; Edan Y
    Int J Soc Robot; 2022; 14(4):995-1012. PubMed ID: 35079297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-sensor dataset of human-human handover.
    Carfì A; Foglino F; Bruno B; Mastrogiovanni F
    Data Brief; 2019 Feb; 22():109-117. PubMed ID: 30581913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humans adjust their grip force when passing an object according to the observed speed of the partner's reaching out movement.
    Controzzi M; Singh H; Cini F; Cecchini T; Wing A; Cipriani C
    Exp Brain Res; 2018 Dec; 236(12):3363-3377. PubMed ID: 30259134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Embedded Framework for Fully Autonomous Object Manipulation in Robotic-Empowered Assisted Living.
    Mezzina G; De Venuto D
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grip-force modulation in human-to-human object handovers: effects of sensory and kinematic manipulations.
    Döhring FR; Müller H; Joch M
    Sci Rep; 2020 Dec; 10(1):22381. PubMed ID: 33361768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unimanual and bimanual weight perception of virtual objects with a new multi-finger haptic interface.
    Giachritsis CD; Ferre M; Barrio J; Wing AM
    Brain Res Bull; 2011 Jun; 85(5):271-5. PubMed ID: 21600271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer and generalization of learned manipulation between unimanual and bimanual tasks.
    Lee-Miller T; Santello M; Gordon AM
    Sci Rep; 2021 Apr; 11(1):8688. PubMed ID: 33888771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of role-differentiated bimanual manipulation in infancy: Part 3. Its relation to the development of bimanual object acquisition and bimanual non-differentiated manipulation.
    Babik I; Michel GF
    Dev Psychobiol; 2016 Mar; 58(2):268-77. PubMed ID: 26642790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parietal area BA7 integrates motor programs for reaching, grasping, and bimanual coordination.
    Le A; Vesia M; Yan X; Crawford JD; Niemeier M
    J Neurophysiol; 2017 Feb; 117(2):624-636. PubMed ID: 27832593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimanual Motor Strategies and Handedness Role in Human-Robot Haptic Interaction.
    Galofaro E; D'Antonio E; Lotti N; Patane F; Casadio M; Masia L
    IEEE Trans Haptics; 2023; 16(2):296-310. PubMed ID: 37167042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictability shapes movement kinematics and grip force regulation in human object handovers.
    Brand TK; Maurer LK; Müller H; Döhring FR; Joch M
    Hum Mov Sci; 2022 Oct; 85():102976. PubMed ID: 35917714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic review of handover actions in human dyads.
    Kopnarski L; Rudisch J; Voelcker-Rehage C
    Front Psychol; 2023; 14():1147296. PubMed ID: 37213382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted ADL tasks.
    Wisneski KJ; Johnson MJ
    J Neuroeng Rehabil; 2007 Mar; 4():7. PubMed ID: 17381842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hand forces and placement are modulated and covary during anticipatory control of bimanual manipulation.
    Lee-Miller T; Santello M; Gordon AM
    J Neurophysiol; 2019 Jun; 121(6):2276-2290. PubMed ID: 30969893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The right anterior intraparietal sulcus is critical for bimanual grasping: a TMS study.
    Le A; Vesia M; Yan X; Niemeier M; Crawford JD
    Cereb Cortex; 2014 Oct; 24(10):2591-603. PubMed ID: 23645719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Left visual field preference for a bimanual grasping task with ecologically valid object sizes.
    Le A; Niemeier M
    Exp Brain Res; 2013 Oct; 230(2):187-96. PubMed ID: 23857170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.