These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37383794)
1. Dataset for rapid state of health estimation of lithium batteries using EIS and machine learning: Training and validation. Rashid M; Faraji-Niri M; Sansom J; Sheikh M; Widanage D; Marco J Data Brief; 2023 Jun; 48():109157. PubMed ID: 37383794 [TBL] [Abstract][Full Text] [Related]
2. Dataset on broadband electrochemical impedance spectroscopy of Lithium-Ion batteries for different values of the state-of-charge. Buchicchio E; De Angelis A; Santoni F; Carbone P; Bianconi F; Smeraldi F Data Brief; 2022 Dec; 45():108589. PubMed ID: 36160063 [TBL] [Abstract][Full Text] [Related]
3. Data of physical and electrochemical characteristics of calendered NMC622 electrodes and lithium-ion cells at pilot-plant battery manufacturing. Faraji-Niri M; Hidalgo MFV; Apachitei G; Dogaru D; Lain M; Copley M; Marco J Data Brief; 2024 Feb; 52():109798. PubMed ID: 38076480 [TBL] [Abstract][Full Text] [Related]
4. A Transfer Learning-Based Method for Personalized State of Health Estimation of Lithium-Ion Batteries. Ma G; Xu S; Yang T; Du Z; Zhu L; Ding H; Yuan Y IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35657842 [TBL] [Abstract][Full Text] [Related]
5. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries. Lee JH; Lee IS Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040 [TBL] [Abstract][Full Text] [Related]
6. Pushing the Eenvelope in Battery Estimation Algorithms. Allam A; Catenaro E; Onori S iScience; 2020 Dec; 23(12):101847. PubMed ID: 33313491 [TBL] [Abstract][Full Text] [Related]
7. Optimization of Electrode and Cell Design for Ultrafast-Charging Lithium-Ion Batteries Based on Molybdenum Niobium Oxide Anodes. Lakhdar Y; Geary H; Houck M; Gastol D; Groombridge AS; Slater PR; Kendrick E ACS Appl Energy Mater; 2022 Sep; 5(9):11229-11240. PubMed ID: 36185814 [TBL] [Abstract][Full Text] [Related]
8. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis. Wang F; Zhai Z; Zhao Z; Di Y; Chen X Nat Commun; 2024 May; 15(1):4332. PubMed ID: 38773131 [TBL] [Abstract][Full Text] [Related]
9. Fast electrochemical impedance spectroscopy of lithium-ion batteries based on the large square wave excitation signal. Wang L; Song Z; Zhu L; Jiang J iScience; 2023 Apr; 26(4):106463. PubMed ID: 37091253 [TBL] [Abstract][Full Text] [Related]
10. Ageing characterization data of lithium-ion battery with highly deteriorated state and wide range of state-of-health. Xia Z; Abu Qahouq JA Data Brief; 2022 Feb; 40():107727. PubMed ID: 35005130 [TBL] [Abstract][Full Text] [Related]
11. A Learning-Based Vehicle-Cloud Collaboration Approach for Joint Estimation of State-of-Energy and State-of-Health. Mei P; Karimi HR; Chen F; Yang S; Huang C; Qiu S Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502177 [TBL] [Abstract][Full Text] [Related]
12. State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer Learning. Yao L; Wen J; Xu S; Zheng J; Hou J; Fang Z; Xiao Y Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298185 [TBL] [Abstract][Full Text] [Related]
13. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Zhang Y; Tang Q; Zhang Y; Wang J; Stimming U; Lee AA Nat Commun; 2020 Apr; 11(1):1706. PubMed ID: 32249782 [TBL] [Abstract][Full Text] [Related]
14. Secondary Structural Ensemble Learning Cluster for Estimating the State of Health of Lithium-Ion Batteries. Chen SZ; Zhang H; Zeng L; Fan Y; Chang L; Zhang Y ACS Omega; 2022 May; 7(20):17406-17415. PubMed ID: 35647454 [TBL] [Abstract][Full Text] [Related]
15. Development of dual polarization battery model with high accuracy for a lithium-ion battery cell under dynamic driving cycle conditions. Tekin M; Karamangil MI Heliyon; 2024 Apr; 10(7):e28454. PubMed ID: 38571645 [TBL] [Abstract][Full Text] [Related]
16. Investigation on the thermo-electric-electrochemical characteristics of retired LFP batteries for echelon applications. Lv Y; Luo W; Mo Y; Zhang G RSC Adv; 2022 May; 12(22):14127-14136. PubMed ID: 35558830 [TBL] [Abstract][Full Text] [Related]
17. An Incremental Voltage Difference Based Technique for Online State of Health Estimation of Li-ion Batteries. Naha A; Han S; Agarwal S; Guha A; Khandelwal A; Tagade P; Hariharan KS; Kolake SM; Yoon J; Oh B Sci Rep; 2020 Jun; 10(1):9526. PubMed ID: 32533023 [TBL] [Abstract][Full Text] [Related]
18. Transfer learning based generalized framework for state of health estimation of Li-ion cells. Sahoo S; Hariharan KS; Agarwal S; Swernath SB; Bharti R; Han S; Lee S Sci Rep; 2022 Aug; 12(1):13173. PubMed ID: 35915128 [TBL] [Abstract][Full Text] [Related]
19. LiPo batteries dataset: Capacity, electrochemical impedance spectra, and fit of equivalent circuit model at various states-of-charge and states-of-health. Galeotti M; CinĂ L; Giammanco C; Di Carlo A; Santoni F; De Angelis A; Moschitta A; Carbone P Data Brief; 2023 Oct; 50():109561. PubMed ID: 37753253 [TBL] [Abstract][Full Text] [Related]
20. Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques. Hannan MA; Lipu MSH; Hussain A; Ker PJ; Mahlia TMI; Mansor M; Ayob A; Saad MH; Dong ZY Sci Rep; 2020 Mar; 10(1):4687. PubMed ID: 32170100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]