These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37383968)

  • 21. Machine learning approaches for prediction of bipolar disorder based on biological, clinical and neuropsychological markers: A systematic review and meta-analysis.
    Colombo F; Calesella F; Mazza MG; Melloni EMT; Morelli MJ; Scotti GM; Benedetti F; Bollettini I; Vai B
    Neurosci Biobehav Rev; 2022 Apr; 135():104552. PubMed ID: 35120970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using structural MRI to identify individuals at genetic risk for bipolar disorders: a 2-cohort, machine learning study.
    Hajek T; Cooke C; Kopecek M; Novak T; Hoschl C; Alda M
    J Psychiatry Neurosci; 2015 Sep; 40(5):316-24. PubMed ID: 25853284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective.
    Kim YK; Na KS
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Jan; 80(Pt B):71-80. PubMed ID: 28648568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Role of Artificial Intelligence in Decoding Speech from EEG Signals: A Scoping Review.
    Shah U; Alzubaidi M; Mohsen F; Abd-Alrazaq A; Alam T; Househ M
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146323
    [No Abstract]   [Full Text] [Related]  

  • 26. Discriminating between bipolar and major depressive disorder using a machine learning approach and resting-state EEG data.
    Ravan M; Noroozi A; Sanchez MM; Borden L; Alam N; Flor-Henry P; Hasey G
    Clin Neurophysiol; 2023 Feb; 146():30-39. PubMed ID: 36525893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning with multiple modalities of brain magnetic resonance imaging data to identify the presence of bipolar disorder.
    Deng LR; Harmata GIS; Barsotti EJ; Williams AJ; Christensen GE; Voss MW; Saleem A; Rivera-Dompenciel AM; Richards JG; Sathyaputri L; Mani M; Abdolmotalleby H; Fiedorowicz JG; Xu J; Shaffer JJ; Wemmie JA; Magnotta VA
    J Affect Disord; 2025 Jan; 368():448-460. PubMed ID: 39278469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinguishing medication-free subjects with unipolar disorder from subjects with bipolar disorder: state matters.
    Rive MM; Redlich R; Schmaal L; Marquand AF; Dannlowski U; Grotegerd D; Veltman DJ; Schene AH; Ruhé HG
    Bipolar Disord; 2016 Nov; 18(7):612-623. PubMed ID: 27870505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine Learning Approaches to Identify Affected Brain Regions in Movement Disorders Using MRI Data: A Systematic Review and Diagnostic Meta-analysis.
    Ghaderi S; Mohammadi M; Sayehmiri F; Mohammadi S; Tavasol A; Rezaei M; Ghalyanchi-Langeroudi A
    J Magn Reson Imaging; 2024 Dec; 60(6):2518-2546. PubMed ID: 38538062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smartphone as a monitoring tool for bipolar disorder: a systematic review including data analysis, machine learning algorithms and predictive modelling.
    Antosik-Wójcińska AZ; Dominiak M; Chojnacka M; Kaczmarek-Majer K; Opara KR; Radziszewska W; Olwert A; Święcicki Ł
    Int J Med Inform; 2020 Jun; 138():104131. PubMed ID: 32305023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetoencephalography resting-state spectral fingerprints distinguish bipolar depression and unipolar depression.
    Jiang H; Dai Z; Lu Q; Yao Z
    Bipolar Disord; 2020 Sep; 22(6):612-620. PubMed ID: 31729112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Use of Quantitative EEG for Differentiating Frontotemporal Dementia From Late-Onset Bipolar Disorder.
    Metin SZ; Erguzel TT; Ertan G; Salcini C; Kocarslan B; Cebi M; Metin B; Tanridag O; Tarhan N
    Clin EEG Neurosci; 2018 May; 49(3):171-176. PubMed ID: 29284291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning algorithm performance evaluation in structural magnetic resonance imaging-based classification of pediatric bipolar disorders type I patients.
    Dou R; Gao W; Meng Q; Zhang X; Cao W; Kuang L; Niu J; Guo Y; Cui D; Jiao Q; Qiu J; Su L; Lu G
    Front Comput Neurosci; 2022; 16():915477. PubMed ID: 36082304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural correlates of working memory function in euthymic people with bipolar disorder compared to healthy controls: A systematic review and meta-analysis.
    Saldarini F; Gottlieb N; Stokes PRA
    J Affect Disord; 2022 Jan; 297():610-622. PubMed ID: 34715175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diagnosis of Schizophrenia Based on the Data of Various Modalities: Biomarkers and Machine Learning Techniques (Review).
    Sharaev MG; Malashenkova IK; Maslennikova AV; Zakharova NV; Bernstein AV; Burnaev EV; Mamedova GS; Krynskiy SA; Ogurtsov DP; Kondrateva EA; Druzhinina PV; Zubrikhina MO; Arkhipov AY; Strelets VB; Ushakov VL
    Sovrem Tekhnologii Med; 2022; 14(5):53-75. PubMed ID: 37181835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Individualized identification of euthymic bipolar disorder using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and machine learning.
    Wu MJ; Passos IC; Bauer IE; Lavagnino L; Cao B; Zunta-Soares GB; Kapczinski F; Mwangi B; Soares JC
    J Affect Disord; 2016 Mar; 192():219-25. PubMed ID: 26748737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Data-driven learning to identify biomarkers in bipolar disorder.
    Li Z; Li W; Yan W; Zhang R; Xie S
    Comput Methods Programs Biomed; 2022 Nov; 226():107112. PubMed ID: 36156436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diagnostic accuracy of machine-learning-assisted detection for anterior cruciate ligament injury based on magnetic resonance imaging: Protocol for a systematic review and meta-analysis.
    Lao Y; Jia B; Yan P; Pan M; Hui X; Li J; Luo W; Li X; Han J; Yan P; Yao L
    Medicine (Baltimore); 2019 Dec; 98(50):e18324. PubMed ID: 31852123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disturbed resting state EEG synchronization in bipolar disorder: A graph-theoretic analysis.
    Kim DJ; Bolbecker AR; Howell J; Rass O; Sporns O; Hetrick WP; Breier A; O'Donnell BF
    Neuroimage Clin; 2013; 2():414-23. PubMed ID: 24179795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.