These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37384521)

  • 1. Tracking the growth fate of single cells and isolating slow-growing cells in human colorectal cancer organoids.
    Coppo R; Kondo J; Onuma K; Inoue M
    STAR Protoc; 2023 Sep; 4(3):102395. PubMed ID: 37384521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for serial organoid formation assay using primary colorectal cancer tissues to evaluate cancer stem cell activity.
    Bergin CJ; Benoit YD
    STAR Protoc; 2022 Mar; 3(1):101218. PubMed ID: 35265864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for isolation and functional validation of label-retaining quiescent colorectal cancer stem cells from patient-derived organoids for RNA-seq.
    Regan JL
    STAR Protoc; 2022 Mar; 3(1):101225. PubMed ID: 35300001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunofluorescent staining of cancer spheroids and fine-needle aspiration-derived organoids.
    Bergdorf KN; Phifer CJ; Bechard ME; Lee MA; McDonald OG; Lee E; Weiss VL
    STAR Protoc; 2021 Jun; 2(2):100578. PubMed ID: 34136836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-mount staining of mouse colorectal cancer organoids and fibroblast-organoid co-cultures.
    Martinez-Ordoñez A; Cid-Diaz T; Duran A; Han Q; Moscat J; Diaz-Meco MT
    STAR Protoc; 2023 Apr; 4(2):102243. PubMed ID: 37083323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol to generate large human intestinal organoids using a rotating bioreactor.
    Takahashi J; Sugihara HY; Kato S; Nagata S; Okamoto R; Mizutani T
    STAR Protoc; 2023 Sep; 4(3):102374. PubMed ID: 37352105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A vascularized adipose organoid model using stromal vascular fraction cells from ruminant animals.
    Jiang Z; Huang Z; Li Y; Yu X; Ma Y; Yu J; Xiang Y; Lv Y; Gao S; Luo Y; Wang B
    STAR Protoc; 2024 Jun; 5(2):103019. PubMed ID: 38635394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for the generation of cultured cortical brain organoid slices.
    Petersilie L; Kafitz KW; Neu LA; Heiduschka S; Le S; Prigione A; Rose CR
    STAR Protoc; 2024 Sep; 5(3):103212. PubMed ID: 39128007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for generation of and high-throughput drug testing with patient-derived colorectal cancer organoids.
    Tan T; Mouradov D; Gibbs P; Sieber OM
    STAR Protoc; 2024 Jun; 5(2):103090. PubMed ID: 38809757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A protocol for efficient CRISPR-Cas9-mediated knock-in in colorectal cancer patient-derived organoids.
    Okamoto T; Natsume Y; Yamanaka H; Fukuda M; Yao R
    STAR Protoc; 2021 Dec; 2(4):100780. PubMed ID: 34585151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for generating dormant human brain metastatic breast cancer spheroids in vitro.
    Kondapaneni RV; Gurung SK; Shevde LA; Rao SS
    STAR Protoc; 2024 Jun; 5(2):102962. PubMed ID: 38492229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal and tumor-derived organoids as a drug screening platform for tumor-specific drug vulnerabilities.
    Calandrini C; Drost J
    STAR Protoc; 2022 Mar; 3(1):101079. PubMed ID: 35036959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obtaining purified human intestinal epithelia for single-cell analysis and organoid culture.
    Ross ADB; Perrone F; Elmentaite R; Teichmann SA; Zilbauer M
    STAR Protoc; 2021 Jun; 2(2):100597. PubMed ID: 34169291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol for the application of single-cell damage in murine intestinal organoid models.
    Seidler AE; Donath S; Gentemann L; Buettner M; Heisterkamp A; Kalies S
    STAR Protoc; 2024 Sep; 5(3):103153. PubMed ID: 39088328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for generation of lung adenocarcinoma organoids from clinical samples.
    Li Z; Yu L; Chen D; Meng Z; Chen W; Huang W
    STAR Protoc; 2021 Mar; 2(1):100239. PubMed ID: 33426535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol for transplantation of cells derived from human midbrain organoids into a Parkinson's disease mouse model to restore motor function.
    Fu CL; Jiang X; Dong BC; Li D; She XY; Yao J
    STAR Protoc; 2024 Sep; 5(3):103251. PubMed ID: 39120976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol for derivation of organoids and patient-derived orthotopic xenografts from glioma patient tumors.
    Oudin A; Baus V; Barthelemy V; Fabian C; Klein E; Dieterle M; Wantz M; Hau AC; Dording C; Bernard A; Michelucci A; Yabo YA; Kanli G; Keunen O; Bjerkvig R; Niclou SP; Golebiewska A
    STAR Protoc; 2021 Jun; 2(2):100534. PubMed ID: 34027491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol to optimize the biobanking of ovarian cancer organoids by accommodating patient-specific differences in stemness potential.
    Trillsch F; Czogalla B; Kraus F; Burges A; Mahner S; Kessler M
    STAR Protoc; 2023 Sep; 4(3):102484. PubMed ID: 37585293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organoid Culture of Isolated Cells from Patient-derived Tissues with Colorectal Cancer.
    Xie BY; Wu AW
    Chin Med J (Engl); 2016 Oct; 129(20):2469-2475. PubMed ID: 27748340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of vascularized human cardiac organoids for 3D in vitro modeling.
    Voges HK; Mills RJ; Porrello ER; Hudson JE
    STAR Protoc; 2023 Sep; 4(3):102371. PubMed ID: 37384522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.