BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37384764)

  • 1. Mechanistic Models of Trophic Interactions: Opportunities for Species Richness and Challenges for Modern Coexistence Theory.
    Spaak JW; Adler PB; Ellner SP
    Am Nat; 2023 Jul; 202(1):E1-E16. PubMed ID: 37384764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predator complementarity dampens variability of phytoplankton biomass in a diversity-stability trophic cascade.
    Rakowski CJ; Farrior CE; Manning SR; Leibold MA
    Ecology; 2021 Dec; 102(12):e03534. PubMed ID: 34496044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled predator-prey oscillations in a chaotic food web.
    Benincà E; Jöhnk KD; Heerkloss R; Huisman J
    Ecol Lett; 2009 Dec; 12(12):1367-78. PubMed ID: 19845726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting the assembly of phytoplankton and zooplankton communities in a polluted semi-closed sea: Effects of marine compartments and environmental selection.
    Zhao Z; Li H; Sun Y; Yang Q; Fan J
    Environ Pollut; 2021 Sep; 285():117256. PubMed ID: 33957514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predator-Prey Coevolution Drives Productivity-Richness Relationships in Planktonic Systems.
    Pu Z; Cortez MH; Jiang L
    Am Nat; 2017 Jan; 189(1):28-42. PubMed ID: 28035895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What Underpins the Trophic Networks of the Plankton in Shallow Oxbow Lakes?
    Kosiba J; Wilk-Woźniak E; Krztoń W; Strzesak M; Pociecha A; Walusiak E; Pudaś K; Szarek-Gwiazda E
    Microb Ecol; 2017 Jan; 73(1):17-28. PubMed ID: 27544677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomagnification of Methylmercury in a Marine Plankton Ecosystem.
    Wu P; Zakem EJ; Dutkiewicz S; Zhang Y
    Environ Sci Technol; 2020 May; 54(9):5446-5455. PubMed ID: 32054263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major restructuring of marine plankton assemblages under global warming.
    Benedetti F; Vogt M; Elizondo UH; Righetti D; Zimmermann NE; Gruber N
    Nat Commun; 2021 Sep; 12(1):5226. PubMed ID: 34471105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eutrophication decrease compositional dissimilarity in freshwater plankton communities.
    Li Y; Geng M; Yu J; Du Y; Xu M; Zhang W; Wang J; Su H; Wang R; Chen F
    Sci Total Environ; 2022 May; 821():153434. PubMed ID: 35090915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing marine plankton food web interactions using DNA metabarcoding.
    Zamora-Terol S; Novotny A; Winder M
    Mol Ecol; 2020 Sep; 29(17):3380-3395. PubMed ID: 32681684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution.
    Barnett A; Beisner BE
    Ecology; 2007 Jul; 88(7):1675-86. PubMed ID: 17645014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into planktonic food-web dynamics through the lens of size and season.
    Giraldo C; Cresson P; MacKenzie K; Fontaine V; Loots C; Delegrange A; Lefebvre S
    Sci Rep; 2024 Jan; 14(1):1684. PubMed ID: 38243111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities.
    Vad CF; Hanny-Endrédi A; Kratina P; Abonyi A; Mironova E; Murray DS; Samchyshyna L; Tsakalakis I; Smeti E; Spatharis S; Tan H; Preiler C; Petrusek A; Bengtsson MM; Ptacnik R
    Glob Chang Biol; 2023 Jun; 29(11):3054-3071. PubMed ID: 36946870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From mice to elephants: overturning the 'one size fits all' paradigm in marine plankton food chains.
    Boyce DG; Frank KT; Leggett WC
    Ecol Lett; 2015 Jun; 18(6):504-15. PubMed ID: 25919397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the fish-
    Rakowski CJ; Leibold MA
    PeerJ; 2022; 10():e14094. PubMed ID: 36193425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The large-scale spatial patterns of ecological networks between phytoplankton and zooplankton in coastal marine ecosystems.
    Zhang Z; Li H; Shen W; Du X; Li S; Wei Z; Zhang Z; Feng K; Deng Y
    Sci Total Environ; 2022 Jun; 827():154285. PubMed ID: 35248637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consistent trophic amplification of marine biomass declines under climate change.
    Kwiatkowski L; Aumont O; Bopp L
    Glob Chang Biol; 2019 Jan; 25(1):218-229. PubMed ID: 30295401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical modeling of cascading migration in a tri-trophic food-chain system.
    Samanta S; Chowdhury T; Chattopadhyay J
    J Biol Phys; 2013 Jun; 39(3):469-87. PubMed ID: 23860921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.
    Lin Q; Xu L; Hou J; Liu Z; Jeppesen E; Han BP
    Water Res; 2017 Nov; 124():618-629. PubMed ID: 28822342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food web de-synchronization in England's largest lake: an assessment based on multiple phenological metrics.
    Thackeray SJ; Henrys PA; Feuchtmayr H; Jones ID; Maberly SC; Winfield IJ
    Glob Chang Biol; 2013 Dec; 19(12):3568-80. PubMed ID: 23868351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.