BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37384800)

  • 21. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis.
    Frick O; Wittmann C
    Microb Cell Fact; 2005 Nov; 4():30. PubMed ID: 16269086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of NADH oxidase to aerobic metabolism of Streptococcus pyogenes.
    Gibson CM; Mallett TC; Claiborne A; Caparon MG
    J Bacteriol; 2000 Jan; 182(2):448-55. PubMed ID: 10629192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HMGB1 in severe soft tissue infections caused by Streptococcus pyogenes.
    Johansson L; Snäll J; Sendi P; Linnér A; Thulin P; Linder A; Treutiger CJ; Norrby-Teglund A
    Front Cell Infect Microbiol; 2014; 4():4. PubMed ID: 24524027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity.
    Cusumano ZT; Watson ME; Caparon MG
    Infect Immun; 2014 Jan; 82(1):233-42. PubMed ID: 24144727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CovRS-Regulated Transcriptome Analysis of a Hypervirulent M23 Strain of Group A Streptococcus pyogenes Provides New Insights into Virulence Determinants.
    Bao YJ; Liang Z; Mayfield JA; Lee SW; Ploplis VA; Castellino FJ
    J Bacteriol; 2015 Oct; 197(19):3191-205. PubMed ID: 26216843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of three lactic acid bacteria and their isogenic ldh deletion mutants shows optimization for YATP (cell mass produced per mole of ATP) at their physiological pHs.
    Fiedler T; Bekker M; Jonsson M; Mehmeti I; Pritzschke A; Siemens N; Nes I; Hugenholtz J; Kreikemeyer B
    Appl Environ Microbiol; 2011 Jan; 77(2):612-7. PubMed ID: 21097579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation.
    Thomas TD; Turner KW; Crow VL
    J Bacteriol; 1980 Nov; 144(2):672-82. PubMed ID: 6776093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli.
    Durnin G; Clomburg J; Yeates Z; Alvarez PJ; Zygourakis K; Campbell P; Gonzalez R
    Biotechnol Bioeng; 2009 May; 103(1):148-61. PubMed ID: 19189409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.
    Novy V; Brunner B; Nidetzky B
    Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Second Messenger c-di-AMP Regulates Diverse Cellular Pathways Involved in Stress Response, Biofilm Formation, Cell Wall Homeostasis, SpeB Expression, and Virulence in Streptococcus pyogenes.
    Fahmi T; Faozia S; Port GC; Cho KH
    Infect Immun; 2019 Jun; 87(6):. PubMed ID: 30936159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of phosphate in the central metabolism of two lactic acid bacteria--a comparative systems biology approach.
    Levering J; Musters MW; Bekker M; Bellomo D; Fiedler T; de Vos WM; Hugenholtz J; Kreikemeyer B; Kummer U; Teusink B
    FEBS J; 2012 Apr; 279(7):1274-90. PubMed ID: 22325620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphotransferase System Uptake and Metabolism of the β-Glucoside Salicin Impact Group A Streptococcal Bloodstream Survival and Soft Tissue Infection.
    Braza RE; Silver AB; Sundar GS; Davis SE; Razi A; Islam E; Hart M; Zhu J; Le Breton Y; McIver KS
    Infect Immun; 2020 Sep; 88(10):. PubMed ID: 32719156
    [No Abstract]   [Full Text] [Related]  

  • 33. ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to D-lactate.
    Utrilla J; Gosset G; Martinez A
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1057-62. PubMed ID: 19471981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose.
    Hasona A; Kim Y; Healy FG; Ingram LO; Shanmugam KT
    J Bacteriol; 2004 Nov; 186(22):7593-600. PubMed ID: 15516572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucose and lactate metabolism by Actinomyces naeslundii.
    Takahashi N; Yamada T
    Crit Rev Oral Biol Med; 1999; 10(4):487-503. PubMed ID: 10634585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competence regulation by oxygen availability and by Nox is not related to specific adjustment of central metabolism in Streptococcus pneumoniae.
    Chapuy-Regaud S; Duthoit F; Malfroy-Mastrorillo L; Gourdon P; Lindley ND; Trombe MC
    J Bacteriol; 2001 May; 183(9):2957-62. PubMed ID: 11292819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ScpC protease of Streptococcus pyogenes affects the outcome of sepsis in a murine model.
    Sjölinder H; Lövkvist L; Plant L; Eriksson J; Aro H; Jones A; Jonsson AB
    Infect Immun; 2008 Sep; 76(9):3959-66. PubMed ID: 18573900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyruvate fermentation in Rhodospirillum rubrum and after transfer from aerobic to anaerobic conditions in the dark.
    Schön G; Voelskow H
    Arch Microbiol; 1976 Feb; 107(1):87-92. PubMed ID: 3145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CcpA and LacD.1 affect temporal regulation of Streptococcus pyogenes virulence genes.
    Kietzman CC; Caparon MG
    Infect Immun; 2010 Jan; 78(1):241-52. PubMed ID: 19841076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367.
    Guo T; Zhang L; Xin Y; Xu Z; He H; Kong J
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842545
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.