These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37385038)

  • 41. Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays.
    Duay J; Gillette E; Liu R; Lee SB
    Phys Chem Chem Phys; 2012 Mar; 14(10):3329-37. PubMed ID: 22298230
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density.
    Zhang Y; Tang Z
    Waste Manag; 2020 Apr; 106():250-260. PubMed ID: 32240941
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.
    Karnan M; Subramani K; Sudhan N; Ilayaraja N; Sathish M
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35191-35202. PubMed ID: 27977134
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hazardous Petroleum Sludge-Derived Nitrogen and Oxygen Co-Doped Carbon Material with Hierarchical Porous Structure for High-Performance All-Solid-State Supercapacitors.
    Li X; Zhang M; Tan Z; Gong Z; Liu P; Wang Z
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34064734
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wood-Derived High-Mass-Loading MnO
    Chen L; Wang F; Tian Z; Guo H; Cai C; Wu Q; Du H; Liu K; Hao Z; He S; Duan G; Jiang S
    Small; 2022 Jun; 18(25):e2201307. PubMed ID: 35587178
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High Mass Loading MnO
    Huang ZH; Song Y; Feng DY; Sun Z; Sun X; Liu XX
    ACS Nano; 2018 Apr; 12(4):3557-3567. PubMed ID: 29579384
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preaddition of Cations to Electrolytes for Aqueous 2.2 V High Voltage Hybrid Supercapacitor with Superlong Cycling Life and Its Energy Storage Mechanism.
    Zhang M; Fan H; Gao Y; Zhao N; Wang C; Ma J; Ma L; Yadav AK; Wang W; Vincent Lee WS; Xiong T; Xue J; Xia Z
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17659-17668. PubMed ID: 32202755
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Petal-like CoMoO
    Chen C; Deng H; Wang C; Luo W; Huang D; Jin T
    ACS Omega; 2021 Aug; 6(30):19616-19622. PubMed ID: 34368548
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrodeposition of α-MnO
    Jeong JH; Park JW; Lee DW; Baughman RH; Kim SJ
    Sci Rep; 2019 Aug; 9(1):11271. PubMed ID: 31375776
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanocellulose/carbon nanotube/manganese dioxide composite electrodes with high mass loadings for flexible supercapacitors.
    Zhang S; Li L; Liu Y; Li Q
    Carbohydr Polym; 2024 Feb; 326():121661. PubMed ID: 38142085
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-performance hybrid carbon nanotube fibers for wearable energy storage.
    Lu Z; Chao Y; Ge Y; Foroughi J; Zhao Y; Wang C; Long H; Wallace GG
    Nanoscale; 2017 Apr; 9(16):5063-5071. PubMed ID: 28265639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Constructed uninterrupted charge-transfer pathways in three-dimensional micro/nanointerconnected carbon-based electrodes for high energy-density ultralight flexible supercapacitors.
    He Y; Chen W; Zhou J; Li X; Tang P; Zhang Z; Fu J; Xie E
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):210-8. PubMed ID: 24325338
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors.
    Zang X; Shen C; Kao E; Warren R; Zhang R; Teh KS; Zhong J; Wei M; Li B; Chu Y; Sanghadasa M; Schwartzberg A; Lin L
    Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29227556
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dioxythiophene-based polymer electrodes for supercapacitor modules.
    Liu DY; Reynolds JR
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interconnected Vanadyl Pyrophosphate Nanonetworks as a Flexible Electrode for High-Voltage and Long-Life Li-Ion Supercapacitors.
    Manikandan R; Raj CJ; Goli N; Oh JM; Kim BC; Periyasamy S; Lee J
    ACS Appl Mater Interfaces; 2023 May; 15(21):25452-25461. PubMed ID: 37204798
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors.
    Luo QP; Huang L; Gao X; Cheng Y; Yao B; Hu Z; Wan J; Xiao X; Zhou J
    Nanotechnology; 2015 Jul; 26(30):304004. PubMed ID: 26152815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel synthesis of hierarchical NiGa
    Li H; Qi F; Yang F; Sun Z
    J Colloid Interface Sci; 2021 Apr; 587():302-310. PubMed ID: 33360903
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO
    Ghosh K; Yue CY; Sk MM; Jena RK
    ACS Appl Mater Interfaces; 2017 May; 9(18):15350-15363. PubMed ID: 28414212
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alpha-MnO
    Poochai C; Sriprachuabwong C; Sodtipinta J; Lohitkarn J; Pasakon P; Primpray V; Maeboonruan N; Lomas T; Wisitsoraat A; Tuantranont A
    J Colloid Interface Sci; 2021 Feb; 583():734-745. PubMed ID: 33075606
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-Step Preparation of Ultrasmall Iron Oxide-Embedded Carbon Nanotubes on Carbon Cloth with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance.
    Wang Y; Xiao J; Zhang T; Ouyang L; Yuan S
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45670-45678. PubMed ID: 34538050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.