These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 37385098)
1. Synergistic degradation of Azure B and sulfanilamide antibiotics by the white-rot fungus Trametes versicolor with an activated ligninolytic enzyme system. Zhang H; Liu X; Liu B; Sun F; Jing L; Shao L; Cui Y; Yao Q; Wang M; Meng C; Gao Z J Hazard Mater; 2023 Sep; 458():131939. PubMed ID: 37385098 [TBL] [Abstract][Full Text] [Related]
2. Effect of Pleurotus ostreatus and Trametes versicolor on triclosan biodegradation and activity of laccase and manganese peroxidase enzymes. Maadani Mallak A; Lakzian A; Khodaverdi E; Haghnia GH; Mahmoudi S Microb Pathog; 2020 Dec; 149():104473. PubMed ID: 32916239 [TBL] [Abstract][Full Text] [Related]
3. Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review. Kumar V; Pallavi P; Sen SK; Raut S Water Environ Res; 2024 Jan; 96(1):e10959. PubMed ID: 38204323 [TBL] [Abstract][Full Text] [Related]
4. Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43. Yang SO; Sodaneath H; Lee JI; Jung H; Choi JH; Ryu HW; Cho KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(9):862-872. PubMed ID: 28463583 [TBL] [Abstract][Full Text] [Related]
5. Decolorization and Detoxification of Synthetic Dyes by Mexican Strains of Levin LN; Hernández-Luna CE; Niño-Medina G; García-Rodríguez JP; López-Sadin I; Méndez-Zamora G; Gutiérrez-Soto G Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31757086 [TBL] [Abstract][Full Text] [Related]
6. Eco-friendly detoxification of hazardous Congo red dye using novel fungal strain Trametes flavida WTFP2: Deduced enzymatic biomineralization process through combinatorial in-silico and in-vitro studies. Sharma B; Tiwari S; Kumar R; Kumar M; Tewari L J Hazard Mater; 2023 Aug; 455():131503. PubMed ID: 37150098 [TBL] [Abstract][Full Text] [Related]
7. Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Chairin T; Nitheranont T; Watanabe A; Asada Y; Khanongnuch C; Lumyong S Appl Biochem Biotechnol; 2013 Jan; 169(2):539-45. PubMed ID: 23239411 [TBL] [Abstract][Full Text] [Related]
8. Synergistic action of laccases from Trametes hirsuta Bm2 improves decolourization of indigo carmine. Zapata-Castillo P; Villalonga-Santana L; Islas-Flores I; Rivera-Muñoz G; Ancona-Escalante W; Solís-Pereira S Lett Appl Microbiol; 2015 Sep; 61(3):252-8. PubMed ID: 26058926 [TBL] [Abstract][Full Text] [Related]
9. GC-MS and spectrophotometric analysis of biodegradation of new disazo dye by Trametes versicolor. Akdogan HA; Demircali A; Aydemir C; Pazarlioglu N; Karci F Prikl Biokhim Mikrobiol; 2011; 47(5):590-4. PubMed ID: 22232902 [TBL] [Abstract][Full Text] [Related]
10. Biodegradation of Direct Blue 15 by free and immobilized Trametes versicolor. Pazarlioglu NK; Akkaya A; Akdogan HA; Gungor B Water Environ Res; 2010 Jul; 82(7):579-85. PubMed ID: 20669718 [TBL] [Abstract][Full Text] [Related]
11. Enhanced biodegradation of benzo[a]pyrene with Trametes versicolor stimulated by citric acid. Zhang Z; Wang L; Liang H; Chen G; Tao H; Wu J; Gao D Environ Geochem Health; 2024 Jul; 46(8):282. PubMed ID: 38963450 [TBL] [Abstract][Full Text] [Related]
12. Removal of phenols-like substances in pharmaceutical wastewater with fungal bioreactors by adding Trametes versicolor. Bernats M; Juhna T Water Sci Technol; 2018 Sep; 78(3-4):743-750. PubMed ID: 30252652 [TBL] [Abstract][Full Text] [Related]
13. Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi. Nguyen LN; Hai FI; Yang S; Kang J; Leusch FD; Roddick F; Price WE; Nghiem LD Bioresour Technol; 2013 Nov; 148():234-41. PubMed ID: 24050925 [TBL] [Abstract][Full Text] [Related]
14. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Nyanhongo GS; Gomes J; Gübitz GM; Zvauya R; Read J; Steiner W Water Res; 2002 Mar; 36(6):1449-56. PubMed ID: 11996335 [TBL] [Abstract][Full Text] [Related]
15. Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes. Vršanská M; Voběrková S; Jiménez Jiménez AM; Strmiska V; Adam V Int J Environ Res Public Health; 2017 Dec; 15(1):. PubMed ID: 29295505 [TBL] [Abstract][Full Text] [Related]
16. Fungal treatment of humic-rich industrial wastewater: application of white rot fungi in remediation of food-processing wastewater. Zahmatkesh M; Spanjers H; van Lier JB Environ Technol; 2017 Nov; 38(21):2752-2762. PubMed ID: 28024460 [TBL] [Abstract][Full Text] [Related]
17. Isolation and screening of natural organic matter-degrading fungi. Solarska S; May T; Roddick FA; Lawrie AC Chemosphere; 2009 May; 75(6):751-8. PubMed ID: 19233448 [TBL] [Abstract][Full Text] [Related]
18. Use of sawdust for production of ligninolytic enzymes by white-rot fungi and pharmaceutical removal. Hultberg M; Golovko O Bioprocess Biosyst Eng; 2024 Apr; 47(4):475-482. PubMed ID: 38480583 [TBL] [Abstract][Full Text] [Related]
19. Neomycin removal using the white rot fungus Stenholm Å; Hedeland M; Pettersson CE J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(6):436-447. PubMed ID: 35583106 [TBL] [Abstract][Full Text] [Related]
20. Impact of wastewater derived dissolved interfering compounds on growth, enzymatic activity and trace organic contaminant removal of white rot fungi - A critical review. Asif MB; Hai FI; Hou J; Price WE; Nghiem LD J Environ Manage; 2017 Oct; 201():89-109. PubMed ID: 28651223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]