These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37385238)

  • 1. Biohybrid tensegrity actuator driven by selective contractions of multiple skeletal muscle tissues.
    Morita K; Morimoto Y; Takeuchi S
    Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37385238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pillar electrodes embedded in the skeletal muscle tissue for selective stimulation of biohybrid actuators with increased contractile distance.
    Li T; Nie M; Morimoto Y; Takeuchi S
    Biofabrication; 2024 May; 16(3):. PubMed ID: 38744312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroactive nano-Biohybrid actuator composed of gold nanoparticle-embedded muscle bundle on molybdenum disulfide nanosheet-modified electrode for motion enhancement of biohybrid robot.
    Shin M; Choi JH; Lim J; Cho S; Ha T; Jeong JH; Choi JW
    Nano Converg; 2022 May; 9(1):24. PubMed ID: 35612632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of C2C12 Differentiation and Control of the Beating Dynamics of Contractile Cells for a Muscle-Driven Biosyncretic Crawler by Electrical Stimulation.
    Liu L; Zhang C; Wang W; Xi N; Wang Y
    Soft Robot; 2018 Dec; 5(6):748-760. PubMed ID: 30277855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human induced pluripotent stem cell-derived cardiac muscle rings for biohybrid self-beating actuator.
    Morita T; Nie M; Takeuchi S
    Lab Chip; 2024 Jul; 24(14):3377-3387. PubMed ID: 38916038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in engineering functional biohybrid robots actuated by living cells.
    Gao L; Akhtar MU; Yang F; Ahmad S; He J; Lian Q; Cheng W; Zhang J; Li D
    Acta Biomater; 2021 Feb; 121():29-40. PubMed ID: 33285324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues.
    Morimoto Y; Onoe H; Takeuchi S
    Sci Robot; 2018 May; 3(18):. PubMed ID: 33141706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biohybrid robot with skeletal muscle tissue covered with a collagen structure for moving in air.
    Morimoto Y; Onoe H; Takeuchi S
    APL Bioeng; 2020 Jun; 4(2):026101. PubMed ID: 32266324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pennate actuators: force, contraction and stiffness.
    Jenkins T; Bryant M
    Bioinspir Biomim; 2020 May; 15(4):046005. PubMed ID: 32241004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-actuator light-controlled biological robots.
    Wang J; Wang Y; Kim Y; Yu T; Bashir R
    APL Bioeng; 2022 Sep; 6(3):036103. PubMed ID: 36035771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV laser-processed microstructure for building biohybrid actuators with anisotropic movement.
    Mita H; Mizuno Y; Tanaka H; Fujie T
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38331416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroactive Polymer-Based Soft Actuator with Integrated Functions of Multi-Degree-of-Freedom Motion and Perception.
    Wang R; Zhang C; Tan W; Yang J; Lin D; Liu L
    Soft Robot; 2023 Feb; 10(1):119-128. PubMed ID: 35482290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contraction model of skeletal muscle driven by external electrical stimulation-Proposal and Identification.
    Hijikata W; Mochida T; Liu J; Sugimoto W
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4761-4764. PubMed ID: 34892275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biohybrid soft robots with self-stimulating skeletons.
    Guix M; Mestre R; Patiño T; De Corato M; Fuentes J; Zarpellon G; Sánchez S
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Novel Sensing Method for a Pneumatic Artificial Muscle Actuator-Driven 2-Degrees of Freedom Parallel Joint.
    Jamil B; Rodrigue H; Choi Y
    Soft Robot; 2023 Feb; 10(1):187-196. PubMed ID: 35617697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimal control strategy for hybrid actuator systems: Application to an artificial muscle with electric motor assist.
    Ishihara K; Morimoto J
    Neural Netw; 2018 Mar; 99():92-100. PubMed ID: 29414537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An artificial muscle actuator for biomimetic underwater propulsors.
    Yim W; Lee J; Kim KJ
    Bioinspir Biomim; 2007 Jun; 2(2):S31-41. PubMed ID: 17671327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origami-Based Vacuum Pneumatic Artificial Muscles with Large Contraction Ratios.
    Lee JG; Rodrigue H
    Soft Robot; 2019 Feb; 6(1):109-117. PubMed ID: 30339102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Coupled FEM-SPH Modeling Technique to Investigate the Contractility of Biohybrid Thin Films.
    Vannozzi L; Mazzocchi T; Hasebe A; Takeoka S; Fujie T; Ricotti L
    Adv Biosyst; 2020 Aug; 4(8):e1900306. PubMed ID: 32519517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells.
    Fujita H; Shimizu K; Yamamoto Y; Ito A; Kamihira M; Nagamori E
    J Tissue Eng Regen Med; 2010 Aug; 4(6):437-43. PubMed ID: 20084621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.