BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 37385249)

  • 1. Dynamic mapping of proteome trafficking within and between living cells by TransitID.
    Qin W; Cheah JS; Xu C; Messing J; Freibaum BD; Boeynaems S; Taylor JP; Udeshi ND; Carr SA; Ting AY
    Cell; 2023 Jul; 186(15):3307-3324.e30. PubMed ID: 37385249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic mapping of proteome trafficking within and between living cells by TransitID.
    Xu WQ; Cheah JS; Xu C; Messing J; Freibaum BD; Boeynaems S; Taylor JP; Udeshi ND; Carr SA; Ting AY
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing protein trafficking by proximity labeling-based proteomics.
    Wang Y; Qin W
    Bioorg Chem; 2024 Feb; 143():107041. PubMed ID: 38134520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic tandem proximity-based proteomics-Protein trafficking at the proteome-scale.
    Chevet E; De Matteis MA; Eskelinen EL; Farhan H
    Traffic; 2023 Nov; 24(11):546-548. PubMed ID: 37581229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in
    Mair A; Xu SL; Branon TC; Ting AY; Bergmann DC
    Elife; 2019 Sep; 8():. PubMed ID: 31535972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotinylation-based proximity labelling proteomics: basics, applications and technical considerations.
    Niinae T; Ishihama Y; Imami K
    J Biochem; 2021 Dec; 170(5):569-576. PubMed ID: 34752609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleolar proteome dynamics.
    Andersen JS; Lam YW; Leung AK; Ong SE; Lyon CE; Lamond AI; Mann M
    Nature; 2005 Jan; 433(7021):77-83. PubMed ID: 15635413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage.
    Boisvert FM; Lam YW; Lamont D; Lamond AI
    Mol Cell Proteomics; 2010 Mar; 9(3):457-70. PubMed ID: 20026476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometry-based methods for analysing the mitochondrial interactome in mammalian cells.
    Koshiba T; Kosako H
    J Biochem; 2020 Mar; 167(3):225-231. PubMed ID: 31647556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery.
    Qin W; Myers SA; Carey DK; Carr SA; Ting AY
    Nat Commun; 2021 Aug; 12(1):4980. PubMed ID: 34404792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximity labeling approaches to study protein complexes during virus infection.
    Zapatero-Belinchón FJ; Carriquí-Madroñal B; Gerold G
    Adv Virus Res; 2021; 109():63-104. PubMed ID: 33934830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Phagosome Proteome by Quantitative Mass Spectrometry.
    Peltier J; Härtlova A; Trost M
    Methods Mol Biol; 2017; 1519():249-263. PubMed ID: 27815885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Split-TurboID enables contact-dependent proximity labeling in cells.
    Cho KF; Branon TC; Rajeev S; Svinkina T; Udeshi ND; Thoudam T; Kwak C; Rhee HW; Lee IK; Carr SA; Ting AY
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):12143-12154. PubMed ID: 32424107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Clickable APEX Probe for Proximity-Dependent Proteomic Profiling in Yeast.
    Li Y; Tian C; Liu K; Zhou Y; Yang J; Zou P
    Cell Chem Biol; 2020 Jul; 27(7):858-865.e8. PubMed ID: 32470320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of cytosol-facing organelle outer membrane proximity proteome by proximity-dependent biotinylation in living Arabidopsis cells.
    Bao X; Jia H; Zhang X; Tian S; Zhao Y; Li X; Lin P; Ma C; Wang P; Song CP; Zhu X
    Plant J; 2024 Apr; 118(1):7-23. PubMed ID: 38261530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity-dependent labeling methods for proteomic profiling in living cells: An update.
    Bosch JA; Chen CL; Perrimon N
    Wiley Interdiscip Rev Dev Biol; 2021 Jan; 10(1):e392. PubMed ID: 32909689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximity Labeling in Plants.
    Xu SL; Shrestha R; Karunadasa SS; Xie PQ
    Annu Rev Plant Biol; 2023 May; 74():285-312. PubMed ID: 36854476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosinase-Based Proximity Labeling in Living Cells and
    Zhu H; Oh JH; Matsuda Y; Mino T; Ishikawa M; Nakamura H; Tsujikawa M; Nonaka H; Hamachi I
    J Am Chem Soc; 2024 Mar; 146(11):7515-7523. PubMed ID: 38445591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization and Purification of
    Hertz HL; Price IF; Tang W
    Bio Protoc; 2022 Apr; 12(8):e4386. PubMed ID: 35800092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative spatial proteomics analysis of proteome turnover in human cells.
    Boisvert FM; Ahmad Y; Gierliński M; Charrière F; Lamont D; Scott M; Barton G; Lamond AI
    Mol Cell Proteomics; 2012 Mar; 11(3):M111.011429. PubMed ID: 21937730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.