BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 37385249)

  • 21. TurboID Screening of the OmpP2 Protein Reveals Host Proteins Involved in Recognition and Phagocytosis of
    Jiang C; Ma N; Cao H; Zeng W; Ren J; Hu Y; Zhou J; Zhang M; Li C; Lang Y; Li W; He Q
    Microbiol Spectr; 2022 Oct; 10(5):e0230722. PubMed ID: 36094311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus.
    Jarboui MA; Bidoia C; Woods E; Roe B; Wynne K; Elia G; Hall WW; Gautier VW
    PLoS One; 2012; 7(11):e48702. PubMed ID: 23166591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative Proteomic Analysis of the Human Nucleolus.
    Bensaddek D; Nicolas A; Lamond AI
    Methods Mol Biol; 2016; 1455():249-62. PubMed ID: 27576725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic Mapping by APEX2-Catalyzed Proximity Labeling in Saccharomyces cerevisiae Semipermeabilized Cells.
    Singer-Krüger B; Jansen RP
    Methods Mol Biol; 2022; 2477():261-274. PubMed ID: 35524122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial proteomics of vesicular trafficking: coupling mass spectrometry and imaging approaches in membrane biology.
    Zhang L; Liang X; Takáč T; Komis G; Li X; Zhang Y; Ovečka M; Chen Y; Šamaj J
    Plant Biotechnol J; 2023 Feb; 21(2):250-269. PubMed ID: 36204821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial proteomics: a powerful discovery tool for cell biology.
    Lundberg E; Borner GHH
    Nat Rev Mol Cell Biol; 2019 May; 20(5):285-302. PubMed ID: 30659282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial perspectives in the redox code-Mass spectrometric proteomics studies of moonlighting proteins.
    Pinto G; Radulovic M; Godovac-Zimmermann J
    Mass Spectrom Rev; 2018 Jan; 37(1):81-100. PubMed ID: 27186965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellular Proteomic Profiling Using Proximity Labeling by TurboID-NES in Microglial and Neuronal Cell Lines.
    Sunna S; Bowen C; Zeng H; Rayaprolu S; Kumar P; Bagchi P; Dammer EB; Guo Q; Duong DM; Bitarafan S; Natu A; Wood L; Seyfried NT; Rangaraju S
    Mol Cell Proteomics; 2023 Jun; 22(6):100546. PubMed ID: 37061046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Spatiomics by Proximity Labeling.
    Kang MG; Rhee HW
    Acc Chem Res; 2022 May; 55(10):1411-1422. PubMed ID: 35512328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactome analysis of Caenorhabditis elegans synapses by TurboID-based proximity labeling.
    Artan M; Barratt S; Flynn SM; Begum F; Skehel M; Nicolas A; de Bono M
    J Biol Chem; 2021 Sep; 297(3):101094. PubMed ID: 34416233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly effective proximate labeling in Drosophila.
    Zhang B; Zhang Y; Liu JL
    G3 (Bethesda); 2021 May; 11(5):. PubMed ID: 33724396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global Proteomic Profiling of Drosophila Ovary: A High-resolution, Unbiased, Accurate and Multifaceted Analysis.
    Velentzas AD; Anagnostopoulos AK; Velentzas PD; Mpakou VE; Sagioglou NE; Tsioka MM; Katarachia S; Manta AK; Konstantakou EG; Papassideri IS; Tsangaris GT; Stravopodis DJ
    Cancer Genomics Proteomics; 2015; 12(6):369-84. PubMed ID: 26543083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uncovering the proximal proteome of CTR1 through TurboID-mediated proximity labeling.
    Chien YC; Reyes A; Park HL; Xu SL; Yoon GM
    Proteomics; 2024 Mar; 24(6):e2300212. PubMed ID: 37876141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organellar Maps Through Proteomic Profiling - A Conceptual Guide.
    Borner GHH
    Mol Cell Proteomics; 2020 Jul; 19(7):1076-1087. PubMed ID: 32345598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative Proteomics Links the LRRC59 Interactome to mRNA Translation on the ER Membrane.
    Hannigan MM; Hoffman AM; Thompson JW; Zheng T; Nicchitta CV
    Mol Cell Proteomics; 2020 Nov; 19(11):1826-1849. PubMed ID: 32788342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell-type and subcellular compartment-specific APEX2 proximity labeling reveals activity-dependent nuclear proteome dynamics in the striatum.
    Dumrongprechachan V; Salisbury RB; Soto G; Kumar M; MacDonald ML; Kozorovitskiy Y
    Nat Commun; 2021 Aug; 12(1):4855. PubMed ID: 34381044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging.
    Hung V; Zou P; Rhee HW; Udeshi ND; Cracan V; Svinkina T; Carr SA; Mootha VK; Ting AY
    Mol Cell; 2014 Jul; 55(2):332-41. PubMed ID: 25002142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Single-Cell-Type Proteome Profiling of Mouse Brain by Nonsurgical AAV-Mediated Proximity Labeling.
    Sun X; Sun H; Han X; Chen PC; Jiao Y; Wu Z; Zhang X; Wang Z; Niu M; Yu K; Liu D; Dey KK; Mancieri A; Fu Y; Cho JH; Li Y; Poudel S; Branon TC; Ting AY; Peng J
    Anal Chem; 2022 Apr; 94(13):5325-5334. PubMed ID: 35315655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using BioID for the Identification of Interacting and Proximal Proteins in Subcellular Compartments in Toxoplasma gondii.
    Bradley PJ; Rayatpisheh S; Wohlschlegel JA; Nadipuram SM
    Methods Mol Biol; 2020; 2071():323-346. PubMed ID: 31758461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating the macropinocytic proteome of Dictyostelium amoebae by high-resolution mass spectrometry.
    Journet A; Klein G; Brugière S; Vandenbrouck Y; Chapel A; Kieffer S; Bruley C; Masselon C; Aubry L
    Proteomics; 2012 Jan; 12(2):241-5. PubMed ID: 22120990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.