BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37385454)

  • 1. Removal of arsenic from acidic liquors using chemical and autotrophic and mixed heterotrophic bacteria-produced biogenic schwertmannites.
    Nural Yaman B; Vatansever Ö; Demir EK; Aytar Çelik P; Puhakka JA; Sahinkaya E
    J Microbiol Methods; 2023 Aug; 211():106775. PubMed ID: 37385454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated acid mine drainage treatment in iron oxidizing ceramic membrane bioreactor with subsequent co-precipitation of iron and arsenic.
    Demir EK; Yaman BN; Çelik PA; Puhakka JA; Sahinkaya E
    Water Res; 2021 Aug; 201():117297. PubMed ID: 34118649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater.
    Liao Y; Liang J; Zhou L
    Chemosphere; 2011 Apr; 83(3):295-301. PubMed ID: 21239041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream.
    Park JH; Han YS; Ahn JS
    Water Res; 2016 Dec; 106():295-303. PubMed ID: 27728822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pH regulation on the formation of biogenic schwertmannite driven by
    Zhou JX; Zhou YJ; Zhang J; Dong Y; Liu FW; Wu ZH; Bi WL; Qin JM
    Environ Technol; 2022 Oct; 43(24):3706-3718. PubMed ID: 34018903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater.
    Liu F; Zhou J; Zhang S; Liu L; Zhou L; Fan W
    PLoS One; 2015; 10(9):e0138891. PubMed ID: 26398214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic(V) removal behavior of schwertmannite synthesized by KMnO
    Cao Q; Chen C; Li K; Sun T; Shen Z; Jia J
    Chemosphere; 2021 Feb; 264(Pt 1):128398. PubMed ID: 33007570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD).
    Fernandez-Rojo L; Héry M; Le Pape P; Braungardt C; Desoeuvre A; Torres E; Tardy V; Resongles E; Laroche E; Delpoux S; Joulian C; Battaglia-Brunet F; Boisson J; Grapin G; Morin G; Casiot C
    Water Res; 2017 Oct; 123():594-606. PubMed ID: 28709104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions.
    Liu L; Guo D; Qiu G; Liu C; Ning Z
    J Environ Manage; 2022 Sep; 317():115425. PubMed ID: 35751250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial pH and K
    Song Y; Zhang J; Wang H
    Water Sci Technol; 2018 Dec; 78(10):2183-2192. PubMed ID: 30629546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of arsenic(V) and arsenic(III) to schwertmannite.
    Burton ED; Bush RT; Johnston SG; Watling KM; Hocking RK; Sullivan LA; Parker GK
    Environ Sci Technol; 2009 Dec; 43(24):9202-7. PubMed ID: 19921855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic removal from acidic solutions with biogenic ferric precipitates.
    Ahoranta SH; Kokko ME; Papirio S; Özkaya B; Puhakka JA
    J Hazard Mater; 2016 Apr; 306():124-132. PubMed ID: 26705889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.
    Hedrich S; Johnson DB
    Bioresour Technol; 2012 Feb; 106():44-9. PubMed ID: 22197072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite.
    Wang Y; Gao M; Huang W; Wang T; Liu Y
    Chemosphere; 2020 Jul; 251():126427. PubMed ID: 32171940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens.
    Cutting RS; Coker VS; Telling ND; Kimber RL; van der Laan G; Pattrick RA; Vaughan DJ; Arenholz E; Lloyd JR
    Environ Sci Technol; 2012 Nov; 46(22):12591-9. PubMed ID: 23043215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues.
    Carlson L; Bigham JM; Schwertmann U; Kyek A; Wagner F
    Environ Sci Technol; 2002 Apr; 36(8):1712-9. PubMed ID: 11993868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms.
    Fan C; Guo C; Zhang J; Ding C; Li X; Reinfelder JR; Lu G; Shi Z; Dang Z
    J Environ Sci (China); 2019 Jun; 80():218-228. PubMed ID: 30952339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox stability of As(III) on schwertmannite surfaces.
    Paikaray S; Essilfie-Dughan J; Göttlicher J; Pollok K; Peiffer S
    J Hazard Mater; 2014 Jan; 265():208-16. PubMed ID: 24361800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Fe(II) concentration on the biosynthesis of schwertmannite by
    Zhang J; Zhou JX; Ji YP; Bi WL; Liu FW
    Environ Technol; 2023 Nov; 44(27):4147-4156. PubMed ID: 35634972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfate-accelerated photochemical oxidation of arsenopyrite in acidic systems under oxic conditions: Formation and function of schwertmannite.
    Hong J; Liu L; Zhang Z; Xia X; Yang L; Ning Z; Liu C; Qiu G
    J Hazard Mater; 2022 Jul; 433():128716. PubMed ID: 35358816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.