These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37385489)

  • 1. Effects of different types of granular activated carbon on methanogenesis of carbohydrate-rich food waste: Performance, microbial communities and optimization.
    Mu H; Ding X; Zhu X; Wang L; Zhang Y; Zhao C
    Sci Total Environ; 2023 Oct; 895():165173. PubMed ID: 37385489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promotion of granular activated carbon on methanogenesis of readily acidogenic carbohydrate-rich waste at low inoculation ratio.
    Zhao Y; Mu H; Su Y; Zhang Y; Qiao X; Zhao C
    Sci Total Environ; 2022 Apr; 817():152642. PubMed ID: 34968585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Powdered activated carbon facilitates methane productivity of anaerobic co-digestion via acidification alleviating: Microbial and metabolic insights.
    Ma J; Wei H; Su Y; Gu W; Wang B; Xie B
    Bioresour Technol; 2020 Oct; 313():123706. PubMed ID: 32585453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing anaerobic digestion of food waste with granular activated carbon immobilized with riboflavin.
    Huang Y; Cai B; Dong H; Li H; Yuan J; Xu H; Wu H; Xu Z; Sun D; Dang Y; Holmes DE
    Sci Total Environ; 2022 Dec; 851(Pt 2):158172. PubMed ID: 35988634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials.
    Chowdhury B; Lin L; Dhar BR; Islam MN; McCartney D; Kumar A
    Chemosphere; 2019 Dec; 236():124362. PubMed ID: 31323554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophilic co-digestion of blackwater and organic kitchen waste: Impacts of granular activated carbon and different mixing ratios.
    Zhang Q; Li R; Guo B; Zhang L; Liu Y
    Waste Manag; 2021 Jul; 131():453-461. PubMed ID: 34265699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shaping biofilm microbiomes by changing GAC location during wastewater anaerobic digestion.
    Yu N; Guo B; Liu Y
    Sci Total Environ; 2021 Aug; 780():146488. PubMed ID: 33774284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key syntrophic partnerships identified in a granular activated carbon amended UASB treating municipal sewage under low temperature conditions.
    Zhang Y; Guo B; Zhang L; Liu Y
    Bioresour Technol; 2020 Sep; 312():123556. PubMed ID: 32464511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing methane production of co-digested food waste with granular activated carbon coated with nano zero-valent iron in an anaerobic digester.
    Al Hasani Z; Kumar Nayak J; Alhimali H; Al-Mamun A
    Bioresour Technol; 2022 Nov; 363():127832. PubMed ID: 36029986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct interspecies electron transfer stimulated by granular activated carbon enhances anaerobic methanation efficiency from typical kitchen waste lipid-rapeseed oil.
    Zhang J; Zhang R; Wang H; Yang K
    Sci Total Environ; 2020 Feb; 704():135282. PubMed ID: 31787308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials.
    Zhao Z; Li Y; Quan X; Zhang Y
    Water Res; 2017 May; 115():266-277. PubMed ID: 28284093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing methane production and organic loading capacity from high solid-content wastewater in modified granular activated carbon (GAC)-amended up-flow anaerobic sludge blanket (UASB).
    Mou A; Yu N; Yang X; Liu Y
    Sci Total Environ; 2024 Jan; 906():167609. PubMed ID: 37804983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing two-phase anaerobic digestion of mixture of primary and secondary sludge by adding granular activated carbon (GAC): Evaluating acidogenic and methanogenic efficiency.
    Guo Y; Zheng Y; Wang Y; Zhao Y; Gao M; Giesy JP; Guo L
    Bioresour Technol; 2022 Nov; 363():127900. PubMed ID: 36075345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into sludge anaerobic digestion with granular activated carbon addition: Methanogenic acceleration and methane reduction relief.
    Jiang Q; Liu H; Zhang Y; Cui MH; Fu B; Liu HB
    Bioresour Technol; 2021 Jan; 319():124131. PubMed ID: 33002784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion.
    Peng H; Zhang Y; Tan D; Zhao Z; Zhao H; Quan X
    Bioresour Technol; 2018 Feb; 249():666-672. PubMed ID: 29091852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling direct voltage and granular activated carbon modified nanoscale zero valent iron for enhancing anaerobic methane production.
    Sun M; Jiang H; Zhang Z; Lv M; Liu G; Feng Y
    Chemosphere; 2022 Jan; 286(Pt 3):131840. PubMed ID: 34399267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of granular activated carbon adsorption and size of microbial aggregates in inoculum on stimulating direct interspecies electron transfer during anaerobic digestion of fat, oil, and grease.
    Xu W; He X; Wang C; Zhao Z
    Bioresour Technol; 2023 Jan; 368():128289. PubMed ID: 36372383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling granular activated carbon and exogenous hydrogen to enhance anaerobic digestion of phenol via predominant syntrophic acetate oxidation and hydrogenotrophic methanogenesis pathway.
    He C; Liu T; Ou H; Yuan S; Hu Z; Wang W
    Bioresour Technol; 2021 Mar; 323():124576. PubMed ID: 33401163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced thermophilic high-solids anaerobic digestion of organic fraction of municipal solid waste with spatial separation from conductive materials in a single reactor volume.
    Zhuravleva EA; Shekhurdina SV; Laikova A; Kotova IB; Loiko NG; Popova NM; Kriukov E; Kovalev AA; Kovalev DA; Katraeva IV; Vivekanand V; Awasthi MK; Litti YV
    J Environ Manage; 2024 Jul; 363():121434. PubMed ID: 38861886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alleviation of ZnO nanoparticles-induced methanogenic inhibition by granular activated carbon.
    Mu H; Zhao Y; Zhao C
    Environ Technol; 2023 Dec; 44(28):4352-4362. PubMed ID: 35722663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.