These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37386705)
1. Genome-Wide Association Mapping and Genomic Prediction of Fusarium Wilt Race 2 Resistance in the USDA Ganaparthi VR; Rennberger G; Wechter P; Levi A; Branham SE Plant Dis; 2023 Dec; 107(12):3836-3842. PubMed ID: 37386705 [TBL] [Abstract][Full Text] [Related]
2. QTL mapping of resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus in Citrullus amarus. Branham SE; Patrick Wechter W; Ling KS; Chanda B; Massey L; Zhao G; Guner N; Bello M; Kabelka E; Fei Z; Levi A Theor Appl Genet; 2020 Feb; 133(2):677-687. PubMed ID: 31822938 [TBL] [Abstract][Full Text] [Related]
3. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery. Lambel S; Lanini B; Vivoda E; Fauve J; Patrick Wechter W; Harris-Shultz KR; Massey L; Levi A Theor Appl Genet; 2014 Oct; 127(10):2105-15. PubMed ID: 25104326 [TBL] [Abstract][Full Text] [Related]
4. A GBS-SNP-based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides. Branham SE; Levi A; Farnham MW; Patrick Wechter W Theor Appl Genet; 2017 Feb; 130(2):319-330. PubMed ID: 27803951 [TBL] [Abstract][Full Text] [Related]
5. QTL Mapping Identifies Novel Source of Resistance to Fusarium Wilt Race 1 in Branham SE; Levi A; Wechter WP Plant Dis; 2019 May; 103(5):984-989. PubMed ID: 30856077 [TBL] [Abstract][Full Text] [Related]
6. Mapping and validation of Fusarium wilt race 2 resistance QTL from Citrullus amarus line USVL246-FR2. Ganaparthi VR; Wechter P; Levi A; Branham SE Theor Appl Genet; 2024 Mar; 137(4):91. PubMed ID: 38555543 [TBL] [Abstract][Full Text] [Related]
7. Genome-Wide Association Study of Resistance to Rennberger G; Branham SE; Wechter WP Plant Dis; 2023 Nov; 107(11):3464-3474. PubMed ID: 37129351 [TBL] [Abstract][Full Text] [Related]
8. Genome-Wide Association Study and Genomic Prediction of Fusarium Wilt Resistance in Common Bean Core Collection. Chiwina K; Xiong H; Bhattarai G; Dickson RW; Phiri TM; Chen Y; Alatawi I; Dean D; Joshi NK; Chen Y; Riaz A; Gepts P; Brick M; Byrne PF; Schwartz H; Ogg JB; Otto K; Fall A; Gilbert J; Shi A Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894980 [TBL] [Abstract][Full Text] [Related]
9. Genetic analysis and chromosome mapping of resistance to Ren Y; Di Jiao ; Gong G; Zhang H; Guo S; Zhang J; Xu Y Mol Breed; 2015; 35(9):183. PubMed ID: 26347205 [TBL] [Abstract][Full Text] [Related]
10. Marker Development for Differentiation of Hudson O; Waliullah S; Fulton JC; Ji P; Dufault NS; Keinath A; Ali ME Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467563 [TBL] [Abstract][Full Text] [Related]
11. A genome-wide association study uncovers consistent quantitative trait loci for resistance to Verticillium wilt and Fusarium wilt race 4 in the US Upland cotton. Abdelraheem A; Elassbli H; Zhu Y; Kuraparthy V; Hinze L; Stelly D; Wedegaertner T; Zhang J Theor Appl Genet; 2020 Feb; 133(2):563-577. PubMed ID: 31768602 [TBL] [Abstract][Full Text] [Related]
12. Genetic and phenotypic diversity of Fusarium oxysporum f. sp. niveum populations from watermelon in the southeastern United States. Petkar A; Harris-Shultz K; Wang H; Brewer MT; Sumabat L; Ji P PLoS One; 2019; 14(7):e0219821. PubMed ID: 31318912 [TBL] [Abstract][Full Text] [Related]
13. Fusarium oxysporum f. sp. Gao Y; Xiong X; Wang H; Bi Y; Wang J; Yan Y; Li D; Song F mBio; 2023 Apr; 14(2):e0015723. PubMed ID: 36856417 [TBL] [Abstract][Full Text] [Related]
15. Analyzing genetic diversity in luffa and developing a Fusarium wilt-susceptible linked SNP marker through a single plant genome-wide association (sp-GWAS) study. Li YD; Liu YC; Jiang YX; Namisy A; Chung WH; Sun YH; Chen SY BMC Plant Biol; 2024 Apr; 24(1):307. PubMed ID: 38644483 [TBL] [Abstract][Full Text] [Related]
16. Genomic regions associated with resistance to Fusarium wilt in castor identified through linkage and association mapping approaches. Shaw RK; Shaik M; Prasad MSL; Prasad RD; Mohanrao MD; Senthilvel S Genome; 2022 Mar; 65(3):123-136. PubMed ID: 34818083 [TBL] [Abstract][Full Text] [Related]
17. CRISPR/Cas9-mediated mutagenesis of Clpsk1 in watermelon to confer resistance to Fusarium oxysporum f.sp. niveum. Zhang M; Liu Q; Yang X; Xu J; Liu G; Yao X; Ren R; Xu J; Lou L Plant Cell Rep; 2020 May; 39(5):589-595. PubMed ID: 32152696 [TBL] [Abstract][Full Text] [Related]
18. First Report of Fusarium Wilt Caused by Fusarium oxysporum f. sp. niveum Race 2 in Georgia Watermelons. Bruton BD; Fish WW; Langston DB Plant Dis; 2008 Jun; 92(6):983. PubMed ID: 30769753 [TBL] [Abstract][Full Text] [Related]
19. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum - watermelon pathosystem. Niu X; Zhao X; Ling KS; Levi A; Sun Y; Fan M Sci Rep; 2016 Jun; 6():28146. PubMed ID: 27320044 [TBL] [Abstract][Full Text] [Related]
20. Palmitoyl Transferase FonPAT2-Catalyzed Palmitoylation of the FonAP-2 Complex Is Essential for Growth, Development, Stress Response, and Virulence in Fusarium oxysporum f. sp. Xiong X; Gao Y; Wang J; Wang H; Lou J; Bi Y; Yan Y; Li D; Song F Microbiol Spectr; 2023 Feb; 11(1):e0386122. PubMed ID: 36533963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]