These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37386820)

  • 41. High-performance dispenser printed MA p-type Bi(0.5)Sb(1.5)Te(3) flexible thermoelectric generators for powering wireless sensor networks.
    Madan D; Wang Z; Chen A; Wright PK; Evans JW
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11872-6. PubMed ID: 24160841
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance.
    Lin H; Tan G; Shen JN; Hao S; Wu LM; Calta N; Malliakas C; Wang S; Uher C; Wolverton C; Kanatzidis MG
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11431-6. PubMed ID: 27513458
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Realizing High Thermoelectric Performance of Bi-Sb-Te-Based Printed Films through Grain Interface Modification by an In Situ-Grown β-Cu
    Mallick MM; Franke L; Rösch AG; Ahmad S; Geßwein H; Eggeler YM; Rohde M; Lemmer U
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61386-61395. PubMed ID: 34910878
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced room-temperature thermoelectric performance of p-type BiSbTe by reducing carrier concentration.
    Wei Z; Yang Y; Wang C; Li Z; Zheng L; Luo J
    RSC Adv; 2019 Jan; 9(4):2252-2257. PubMed ID: 35516121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Weighted Mobility Ratio Engineering for High-Performance Bi-Te-Based Thermoelectric Materials via Suppression of Minority Carrier Transport.
    Kim M; Kim SI; Kim SW; Kim HS; Lee KH
    Adv Mater; 2021 Nov; 33(47):e2005931. PubMed ID: 33759235
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synergetic Enhancement of Strength-Ductility and Thermoelectric Properties of Ag
    Wang H; Feng X; Lu Z; Duan B; Yang H; Wu L; Zhou L; Zhai P; Snyder GJ; Li G; Zhang Q
    Adv Mater; 2023 Sep; 35(35):e2302969. PubMed ID: 37192421
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of Bi–Sb–Te Thermoelectric by Cold-Pressed Sintering for Motorcycle Exhaust.
    Kao MJ; Chen MJ
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2550-553. PubMed ID: 29652124
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploring Bi
    Zhang N; Zheng F; Huang B; Ji Y; Shao Q; Li Y; Xiao X; Huang X
    Adv Mater; 2020 Jun; 32(22):e1906477. PubMed ID: 32323370
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced Figure of Merit in Bismuth-Antimony Fine-Grained Alloys at Cryogenic Temperatures.
    Gao S; Gaskins J; Hu X; Tomko K; Hopkins P; Poon SJ
    Sci Rep; 2019 Oct; 9(1):14892. PubMed ID: 31624277
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergistic Optimization of the Thermoelectric and Mechanical Properties of Large-Size Homogeneous Bi
    Lee CH; Dharmaiah P; Kim DH; Yoon DK; Kim TH; Song SH; Hong SJ
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10394-10406. PubMed ID: 35188737
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of silicon and sodium on thermoelectric properties of thallium-doped lead telluride-based materials.
    Zhang Q; Wang H; Zhang Q; Liu W; Yu B; Wang H; Wang D; Ni G; Chen G; Ren Z
    Nano Lett; 2012 May; 12(5):2324-30. PubMed ID: 22493974
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Decouple electronic and phononic transport in nanotwinned structures: a new strategy for enhancing the figure-of-merit of thermoelectrics.
    Zhou Y; Gong X; Xu B; Hu M
    Nanoscale; 2017 Jul; 9(28):9987-9996. PubMed ID: 28681894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
    Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T
    Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi(2)Te(2.7)Se(0.3) nanoplatelet composites.
    Soni A; Shen Y; Yin M; Zhao Y; Yu L; Hu X; Dong Z; Khor KA; Dresselhaus MS; Xiong Q
    Nano Lett; 2012 Aug; 12(8):4305-10. PubMed ID: 22823516
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Achieving High-Performance Ge
    Sun Q; Shi XL; Hong M; Yin Y; Xu SD; Chen J; Yang L; Zou J; Chen ZG
    Small; 2022 Feb; 18(6):e2105923. PubMed ID: 34854565
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys.
    Bu Z; Zhang X; Shan B; Tang J; Liu H; Chen Z; Lin S; Li W; Pei Y
    Sci Adv; 2021 May; 7(19):. PubMed ID: 33962945
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extraordinary n-Type Mg
    Shi X; Zhao T; Zhang X; Sun C; Chen Z; Lin S; Li W; Gu H; Pei Y
    Adv Mater; 2019 Sep; 31(36):e1903387. PubMed ID: 31276253
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOS-Compatible Sputtering Technique.
    Bhattacharjee N; Mahalingam K; Fedorko A; Lauter V; Matzelle M; Singh B; Grutter A; Will-Cole A; Page M; McConney M; Markiewicz R; Bansil A; Heiman D; Sun NX
    Adv Mater; 2022 Apr; 34(15):e2108790. PubMed ID: 35132680
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced Thermoelectric Properties of p-Type Bi
    Tong Y; Huang W; Tan X; Yi L; Zhuang S; Wu J; Song K; Liu G; Zhang G; Jiang J
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55780-55786. PubMed ID: 36475592
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications.
    Chung DY; Hogan T; Brazis P; Rocci-Lane M; Kannewurf C; Bastea M; Uher C; Kanatzidis MG
    Science; 2000 Feb; 287(5455):1024-7. PubMed ID: 10669411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.