BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37386941)

  • 1. Serum Response Factor Reduces Gene Expression Noise and Confers Cell State Stability.
    Zhang J; Wu Q; Hu X; Wang Y; Lu J; Chakraborty R; Martin KA; Guo S
    Stem Cells; 2023 Oct; 41(10):907-915. PubMed ID: 37386941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Srf destabilizes cellular identity by suppressing cell-type-specific gene expression programs.
    Ikeda T; Hikichi T; Miura H; Shibata H; Mitsunaga K; Yamada Y; Woltjen K; Miyamoto K; Hiratani I; Yamada Y; Hotta A; Yamamoto T; Okita K; Masui S
    Nat Commun; 2018 Apr; 9(1):1387. PubMed ID: 29643333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of nuclear actin levels and MRTF/SRF target gene expression during PC6.3 cell differentiation.
    Kyheröinen S; Hyrskyluoto A; Sokolova M; Vartiainen MK
    Exp Cell Res; 2022 Nov; 420(2):113356. PubMed ID: 36122768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets.
    Niu Z; Yu W; Zhang SX; Barron M; Belaguli NS; Schneider MD; Parmacek M; Nordheim A; Schwartz RJ
    J Biol Chem; 2005 Sep; 280(37):32531-8. PubMed ID: 15929941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serum response factor: positive and negative regulation of an epithelial gene expression network in the destrin mutant cornea.
    Kawakami-Schulz SV; Verdoni AM; Sattler SG; Jessen E; Kao WW; Ikeda A; Ikeda S
    Physiol Genomics; 2014 Apr; 46(8):277-89. PubMed ID: 24550211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NANOG Reverses the Myogenic Differentiation Potential of Senescent Stem Cells by Restoring ACTIN Filamentous Organization and SRF-Dependent Gene Expression.
    Mistriotis P; Bajpai VK; Wang X; Rong N; Shahini A; Asmani M; Liang MS; Wang J; Lei P; Liu S; Zhao R; Andreadis ST
    Stem Cells; 2017 Jan; 35(1):207-221. PubMed ID: 27350449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells.
    Schratt G; Philippar U; Berger J; Schwarz H; Heidenreich O; Nordheim A
    J Cell Biol; 2002 Feb; 156(4):737-50. PubMed ID: 11839767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transcription factor Srf regulates hematopoietic stem cell adhesion.
    Ragu C; Elain G; Mylonas E; Ottolenghi C; Cagnard N; Daegelen D; Passegué E; Vainchenker W; Bernard OA; Penard-Lacronique V
    Blood; 2010 Nov; 116(22):4464-73. PubMed ID: 20709909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SRF transcriptionally regulates the oligodendrocyte cytoskeleton during CNS myelination.
    Iram T; Garcia MA; Amand J; Kaur A; Atkins M; Iyer M; Lam M; Ambiel N; Jorgens DM; Keller A; Wyss-Coray T; Kern F; Zuchero JB
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2307250121. PubMed ID: 38483990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prostaglandin E2 inhibits α-smooth muscle actin transcription during myofibroblast differentiation via distinct mechanisms of modulation of serum response factor and myocardin-related transcription factor-A.
    Penke LR; Huang SK; White ES; Peters-Golden M
    J Biol Chem; 2014 Jun; 289(24):17151-62. PubMed ID: 24802754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coronary Disease-Associated Gene
    Nagao M; Lyu Q; Zhao Q; Wirka RC; Bagga J; Nguyen T; Cheng P; Kim JB; Pjanic M; Miano JM; Quertermous T
    Circ Res; 2020 Feb; 126(4):517-529. PubMed ID: 31815603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects.
    Lamm N; Ben-David U; Golan-Lev T; Storchová Z; Benvenisty N; Kerem B
    Cell Stem Cell; 2016 Feb; 18(2):253-61. PubMed ID: 26669899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Srf controls satellite cell fusion through the maintenance of actin architecture.
    Randrianarison-Huetz V; Papaefthymiou A; Herledan G; Noviello C; Faradova U; Collard L; Pincini A; Schol E; Decaux JF; Maire P; Vassilopoulos S; Sotiropoulos A
    J Cell Biol; 2018 Feb; 217(2):685-700. PubMed ID: 29269426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pathogenic relationship between a regulator of the actin cytoskeleton and serum response factor.
    Verdoni AM; Schuster KJ; Cole BS; Ikeda A; Kao WW; Ikeda S
    Genetics; 2010 Sep; 186(1):147-57. PubMed ID: 20610412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interferon-gamma-mediated inhibition of serum response factor-dependent smooth muscle-specific gene expression.
    Shi Z; Rockey DC
    J Biol Chem; 2010 Oct; 285(42):32415-24. PubMed ID: 20685657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor.
    Posern G; Sotiropoulos A; Treisman R
    Mol Biol Cell; 2002 Dec; 13(12):4167-78. PubMed ID: 12475943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degeneration of the mouse retina upon dysregulated activity of serum response factor.
    Sandström J; Heiduschka P; Beck SC; Philippar U; Seeliger MW; Schraermeyer U; Nordheim A
    Mol Vis; 2011 Apr; 17():1110-27. PubMed ID: 21552476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serum response factor is required for cell contact maintenance but dispensable for proliferation in visceral yolk sac endothelium.
    Holtz ML; Misra RP
    BMC Dev Biol; 2011 Mar; 11():18. PubMed ID: 21401944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PIAS1 activates the expression of smooth muscle cell differentiation marker genes by interacting with serum response factor and class I basic helix-loop-helix proteins.
    Kawai-Kowase K; Kumar MS; Hoofnagle MH; Yoshida T; Owens GK
    Mol Cell Biol; 2005 Sep; 25(18):8009-23. PubMed ID: 16135793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice.
    Koegel H; von Tobel L; Schäfer M; Alberti S; Kremmer E; Mauch C; Hohl D; Wang XJ; Beer HD; Bloch W; Nordheim A; Werner S
    J Clin Invest; 2009 Apr; 119(4):899-910. PubMed ID: 19307725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.