These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37386952)

  • 1. Deep Learning Framework for Categorical Emotional States Assessment Using Electrodermal Activity Signals.
    Govarthan PK; Sriram Kumar P ; Ganapathy N; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 Jun; 305():40-43. PubMed ID: 37386952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Analysis of Electrodermal Activity Decomposition Methods in Emotion Detection Using Machine Learning.
    Sriram Kumar P ; Govarthan PK; Ganapathy N; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 May; 302():73-77. PubMed ID: 37203612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network.
    Ganapathy N; Veeranki YR; Kumar H; Swaminathan R
    J Med Syst; 2021 Mar; 45(4):49. PubMed ID: 33660087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal Electrodermal Activity Segment for Enhanced Emotion Recognition Using Spectrogram-Based Feature Extraction and Machine Learning.
    P SK; Agastinose Ronickom JF
    Int J Neural Syst; 2024 May; 34(5):2450027. PubMed ID: 38511233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of Dichotomous Emotional States Using Electrodermal Activity Signals and Multispectral Analysis.
    Veeranki YR; Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2022 May; 294():941-942. PubMed ID: 35612249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolution Neural Network.
    Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2019; 258():140. PubMed ID: 30942731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Parametric Classifiers Based Emotion Classification Using Electrodermal Activity and Modified Hjorth Features.
    Veeranki YR; Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2021 May; 281():163-167. PubMed ID: 34042726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Evaluation of Deep Learning Models for Continuous Acute Pain Detection Based on Phasic Electrodermal Activity.
    Pinzon-Arenas JO; Kong Y; Chon KH; Posada-Quintero HF
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4250-4260. PubMed ID: 37399159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodermal Activity for Measuring Cognitive and Emotional Stress Level.
    Rahma ON; Putra AP; Rahmatillah A; Putri YSKA; Fajriaty ND; Ain K; Chai R
    J Med Signals Sens; 2022; 12(2):155-162. PubMed ID: 35755979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress State Classification Based on Deep Neural Network and Electrodermal Activity Modeling.
    Vasile F; Vizziello A; Brondino N; Savazzi P
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emotion Analysis Using Electrodermal Signals and Spiking Deep Belief Network.
    Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2020 Jun; 270():1269-1270. PubMed ID: 32570613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Deep-Learning Model for Subject-Independent Human Emotion Recognition Using Electrodermal Activity Sensors.
    Al Machot F; Elmachot A; Ali M; Al Machot E; Kyamakya K
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Emotion Recognition System Using Blood Volume Pulse and XGBoost Learning.
    Lebaka LN; Sriram Kumar P ; Govarthan PK; Rani P; Ganapathy N; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 Jun; 305():52-55. PubMed ID: 37386956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining the consistency of continuous affect annotations and psychophysiological measures in response to emotional videos.
    Kim I; Kim H; Kim J
    Int J Psychophysiol; 2023 Nov; 193():112242. PubMed ID: 37716441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zooming into the Complex Dynamics of Electrodermal Activity Recorded during Emotional Stimuli: A Multiscale Approach.
    Lavezzo L; Gargano A; Scilingo EP; Nardelli M
    Bioengineering (Basel); 2024 May; 11(6):. PubMed ID: 38927756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personalized Deep Bi-LSTM RNN Based Model for Pain Intensity Classification Using EDA Signal.
    Pouromran F; Lin Y; Kamarthi S
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning.
    Dar MN; Akram MU; Yuvaraj R; Gul Khawaja S; Murugappan M
    Comput Biol Med; 2022 May; 144():105327. PubMed ID: 35303579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning based classification of unsegmented phonocardiogram spectrograms leveraging transfer learning.
    Khan KN; Khan FA; Abid A; Olmez T; Dokur Z; Khandakar A; Chowdhury MEH; Khan MS
    Physiol Meas; 2021 Sep; 42(9):. PubMed ID: 34388736
    [No Abstract]   [Full Text] [Related]  

  • 19. An improved multi-input deep convolutional neural network for automatic emotion recognition.
    Chen P; Zou B; Belkacem AN; Lyu X; Zhao X; Yi W; Huang Z; Liang J; Chen C
    Front Neurosci; 2022; 16():965871. PubMed ID: 36267236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Preliminary Study on Automatic Motion Artifact Detection in Electrodermal Activity Data Using Machine Learning.
    Hossain MB; Posada-Quintero HF; Kong Y; McNaboe R; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6920-6923. PubMed ID: 34892695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.